skip to main content


Title: Attributing ocean acidification to major carbon producers
Abstract

Recent research has quantified the contributions of CO2and CH4emissions traced to the products of major fossil fuel companies and cement manufacturers to global atmospheric CO2, surface temperature, and sea level rise. This work has informed societal considerations of the climate responsibilities of these major industrial carbon producers. Here, we extend this work to historical (1880–2015) and recent (1965–2015) acidification of the world’s ocean. Using an energy balance carbon-cycle model, we find that emissions traced to the 88 largest industrial carbon producers from 1880–2015 and 1965–2015 have contributed ∼55% and ∼51%, respectively, of the historical 1880–2015 decline in surface ocean pH. As ocean acidification is not spatially uniform, we employ a three-dimensional ocean model and identify five marine regions with large declines in surface water pH and aragonite saturation state over similar historical (average 1850–1859 to average 2000–2009) and recent (average 1960–1969 to average of 2000–2009) time periods. We characterize the biological and socioeconomic systems in these regions facing loss and damage from ocean acidification in the context of climate change and other stressors. Such analysis can inform societal consideration of carbon producer responsibility for current and near-term risks of further loss and damage to human communities dependent on marine ecosystems and fisheries vulnerable to ocean acidification.

 
more » « less
NSF-PAR ID:
10302759
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The California Current Ecosystem (CCE) is a natural laboratory for studying the chemical and ecological impacts of ocean acidification. Biogeochemical variability in the region is due primarily to wind‐driven near‐shore upwelling of cold waters that are rich in re‐mineralized carbon and poor in oxygen. The coastal regions are exposed to surface waters with increasing concentrations of anthropogenic CO2(Canth) from exchanges with the atmosphere and the shoreward transport and mixing of upwelled water. The upwelling drives intense cycling of organic matter that is created through photosynthesis in the surface ocean and degraded through biological respiration in subsurface habitats. We used an extended multiple linear‐regression approach to determine the spatial and temporal concentrations of Canthand respired carbon (Cbio) in the CCE based on cruise data from 2007, 2011, 2012, 2013, 2016, and 2021. Over the region, the Canthaccumulation rate increased from 0.8 ± 0.1 μmol kg−1 yr−1in the northern latitudes to 1.1 ± 0.1 μmol kg−1 yr−1further south. The rates decreased to values of about ∼0.3 μmol kg−1 yr−1at depths near 300 m. These accumulation rates at the surface correspond to total pH decreases that averaged about 0.002 yr‐1; whereas, decreases in aragonite saturation state ranged from 0.006 to 0.011 yr‐1. The impact of the Canthuptake was to decrease the amount of oxygen consumption required to cross critical biological thresholds (i.e., calcification, dissolution) for marine calcifiers and are significantly lower in the recent cruises than in the pre‐industrial period because of the addition of Canth.

     
    more » « less
  2. Abstract

    The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreakerOden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica) in separate experiments under approximately 400, 650, 1000, and 2000 μatm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues.

     
    more » « less
  3. Abstract

    Ocean acidification due to anthropogenic CO2emission reduces ocean pH and carbonate saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in the future. On longer time scale, however, recent studies of deep‐sea carbonate sediments suggest significantly increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we present new model simulations in comparison to published Miocene carbonate accumulation rates to show that global biogenic carbonate production in the pelagic environment was approximately doubled relative to present‐day values when elevated atmosphericpCO2led to substantial global warming ∼13–15 million years ago. Our analysis also finds that although high carbonate production was associated with high dissolution in the deep‐sea, net pelagic carbonate burial was approximately 30%–45% higher than modern. At the steady state of the long‐term carbon cycle, this requires an equivalent increase in riverine carbonate alkalinity influx during the Middle Miocene, attributable to enhanced chemical weathering under a warmer climate. Elevated biogenic carbonate production resulted in a Miocene ocean that had carbon (dissolved inorganic carbon) and alkalinity (total alkalinity) inventories similar to modern values but was poorly buffered and less saturated in both the surface and the deep ocean relative to modern.

     
    more » « less
  4. Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15C,20C and 24C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulation of calcification washigher in the HC-grown cells at 15 and 20C, whereas at24C observed enhancement was not significant. The calcificationto photosynthesis ratio (CalPho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24C, exposure to UVR significantly increased the CalPhoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe CalPho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi.

     
    more » « less
  5. Abstract

    It is well understood that differences in the cues used by consumers and their resources in fluctuating environments can give rise to trophic mismatches governing the emergent effects of global change. Trophic mismatches caused by changes in consumer energetics during periods of low resource availability have received far less attention, although this may be common for consumers during winter when primary producers are limited by light. Even less is understood about these dynamics in marine ecosystems, where consumers must cope with energetically costly changes in CO2‐driven carbonate chemistry that will be most pronounced in cold temperatures. This may be especially important for calcified marine herbivores, such as the pinto abalone (Haliotis kamschatkana).H. kamschatkanaare of high management concern in the North Pacific due to the active recreational fishery and their importance among traditional cultures, and research suggests they may require more energy to maintain their calcified shells and acid/base balance with ocean acidification. Here we use field surveys to demonstrate seasonal mismatches in the exposure of marine consumers to low pH and algal resource identity during winter in a subpolar, marine ecosystem. We then use these data to test how the effects of exposure to seasonally relevant pH conditions onH. kamschatkanaare mediated by seasonal resource identity. We find that exposure to projected future winter pH conditions decreases metabolism and growth, and this effect on growth is pronounced when their diet is limited to the algal species available during winter. Our results suggest that increases in the energetic demands of pinto abalone caused by ocean acidification during winter will be exacerbated by seasonal shifts in their resources. These findings have profound implications for other marine consumers and highlight the importance of considering fluctuations in exposure and resources when inferring the emergent effects of global change.

     
    more » « less