The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreaker
Ocean acidification due to anthropogenic CO2emission reduces ocean pH and carbonate saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in the future. On longer time scale, however, recent studies of deep‐sea carbonate sediments suggest significantly increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we present new model simulations in comparison to published Miocene carbonate accumulation rates to show that global biogenic carbonate production in the pelagic environment was approximately doubled relative to present‐day values when elevated atmospheric
- NSF-PAR ID:
- 10416195
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 6
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Oden , we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica ) in separate experiments under approximately 400, 650, 1000, and 2000μ atm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues. -
Biological processes in Southern Ocean surface waters have widespread impacts on global productivity and oceanic CO
2 storage. Here, we demonstrate that biological calcification in the Southern Ocean exerts a strong control on the global distribution of alkalinity. The signature of Southern Ocean calcification is evident in observations as a depletion of potential alkalinity within portions of Subantarctic Mode and Intermediate Water. Experiments with an ocean general circulation model indicate that calcification and subsequent sinking of biogenic carbonate in this region effectively transfers alkalinity between the upper and lower cells of the meridional overturning circulation. Southern Ocean calcification traps alkalinity in the deep ocean; decreasing calcification permits more alkalinity to leak out from the Southern Ocean, yielding increased alkalinity in the upper cell and low‐latitude surface waters. These processes have implications for atmosphere‐ocean partitioning of carbon. Reductions in Southern Ocean calcification increase the buffer capacity of surface waters globally, thereby enhancing the ocean's ability to absorb carbon from the atmosphere. This study highlights the critical role of Southern Ocean calcification in determining global alkalinity distributions, demonstrating that changes in this process have the potential for widespread consequences impacting air‐sea partitioning of CO2 . -
Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y−1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y−1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange.
-
Abstract Rivers and streams play an important role within the global carbon cycle, in part through emissions of carbon dioxide (CO2) to the atmosphere. However, the sources of this CO2and their spatiotemporal variability are difficult to constrain. Recent work has highlighted the role of carbonate buffering reactions that may serve as a source of CO2in high alkalinity systems. In this study, we seek to develop a quantitative framework for the role of carbonate buffering in the fluxes and spatiotemporal patterns of CO2and the stable and radio‐ isotope composition of dissolved inorganic carbon (DIC). We incorporate DIC speciation calculations of carbon isotopologues into a stream network CO2model and perform a series of simulations, ranging from the degassing of a groundwater seep to a hydrologically‐coupled 5th‐order stream network. We find that carbonate buffering reactions contribute >60% of emissions in high‐alkalinity, moderate groundwater‐CO2environments. However, atmosphere equilibration timescales of CO2are minimally affected, which contradicts hypotheses that carbonate buffering maintains high CO2across Strahler orders in high alkalinity systems. In contrast, alkalinity dramatically increases isotope equilibration timescales, which acts to decouple CO2and DIC variations from the isotopic composition even under low alkalinity. This significantly complicates a common method for carbon source identification. Based on similar impacts on atmospheric equilibration for stable and radio‐ carbon isotopologues, we develop a quantitative method for partitioning groundwater and stream corridor carbon sources in carbonate‐dominated watersheds. Together, these results provide a framework to guide fieldwork and interpretations of stream network CO2patterns across variable alkalinities.
-
null (Ed.)International Ocean Discovery Program Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. Eight drill sites are located in the carbonate edifice of the Republic of Maldives, which bears a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. This tropical marine record is key for better understanding the effects of this global evolution in the Indo-Pacific realm. The bank geometries of the growing carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and deposition of contourite fans and giant sediment drifts. Expedition 359 cores are intended for reconstructing the changing current system through time that is directly related to the evolution of the Indian monsoon. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. Expedition 359 had two main focus points. The first was to date precisely the onset of the current system that is potentially in concert with the onset or the intensification of the Indian monsoon and coincides with the onset of the modern current system in the world’s ocean. The second important outcome of Expedition 359 is groundtruthing the hypothesis that the dramatic, pronounced change in style of the sedimentary carbonate sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions were directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important, as such records are the only type that exist in deep time.more » « less