skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual Framing of Science Conspiracy Videos: Integrating Machine Learning with Communication Theories to Study the Use of Color and Brightness
Recent years have witnessed an explosion of science conspiracy videos on the Internet, challenging science epistemology and public understanding of science. Scholars have started to examine the persuasion techniques used in conspiracy messages such as uncertainty and fear yet, little is understood about the visual narratives, especially how visual narratives differ in videos that debunk conspiracies versus those that propagate conspiracies. This paper addresses this gap in understanding visual framing in conspiracy videos through analyzing millions of frames from conspiracy and counter-conspiracy YouTube videos using computational methods. We found that conspiracy videos tended to use lower color variance and brightness, especially in thumbnails and earlier parts of the videos. This paper also demonstrates how researchers can integrate textual and visual features in machine learning models to study conspiracies on social media and discusses the implications of computational modeling for scholars interested in studying visual manipulation in the digital era. The analysis of visual and textual features presented in this paper could be useful for future studies focused on designing systems to identify conspiracy content on the Internet.  more » « less
Award ID(s):
2027375
PAR ID:
10302791
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Computational communication research
ISSN:
2665-9085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper studies conspiracy and debunking narratives about the origins of COVID-19 on a major Chinese social media platform, Weibo, from January to April 2020. Popular conspiracies about COVID-19 on Weibo, including that the virus is human-synthesized or a bioweapon, differ substan-tially from those in the United States. They attribute more responsibility to the United States than to China, especially following Sino-U.S. confrontations. Compared to conspiracy posts, debunking posts are associated with lower user participation but higher mobilization. Debunking narratives can be more engaging when they come from women and influencers and cite scientists. Our find-ings suggest that conspiracy narratives can carry highly cultural and political orientations. Correc-tion efforts should consider political motives and identify important stakeholders to reconstruct international dialogues toward intercultural understanding. 
    more » « less
  2. Visual contents, including images and videos, are dominant on the Internet today. The conventional search engine is mainly designed for textual documents, which must be extended to process and manage increasingly high volumes of visual data objects. In this paper, we present Mixer, an effective system to identify and analyze visual contents and to extract their features for data retrievals, aiming at addressing two critical issues: (1) efficiently and timely understanding visual contents, (2) retrieving them at high precision and recall rates without impairing the performance. In Mixer, the visual objects are categorized into different classes, each of which has representative visual features. Subsystems for model production and model execution are developed. Two retrieval layers are designed and implemented for images and videos, respectively. In this way, we are able to perform aggregation retrievals of the two types in efficient ways. The experiments with Baidu's production workloads and systems show that Mixer halves the model production time and raises the feature production throughput by 9.14x. Mixer also achieves the precision and recall of video retrievals at 95% and 97%, respectively. Mixer has been in its daily operations, which makes the search engine highly scalable for visual contents at a low cost. Having observed productivity improvement of upper-level applications in the search engine, we believe our system framework would generally benefit other data processing applications. 
    more » « less
  3. null (Ed.)
    Visual contents, including images and videos, are dominant on the Internet today. The conventional search engine is mainly designed for textual documents, which must be extended to process and manage increasingly high volumes of visual data objects.In this paper, we present Mixer, an effective system to identify and analyze visual contents and to extract their features for data retrievals, aiming at addressing two critical issues: (1) efficiently and timely understanding visual contents, (2) retrieving them at high precision and recall rates without impairing the performance. In Mixer, the visual objects are categorized into different classes, each of which has representative visual features. Subsystems for model production and model execution are developed. Two retrieval layers are designed and implemented for images and videos, respectively.In this way, we are able to perform aggregation retrievals of the two types in efficient ways. The experiments with Baidu’s production workloads and systems show that Mixer halves the model production time and raises the feature production throughput by 9.14x.Mixer also achieves the precision and recall of video retrievals at 95% and 97%, respectively. Mixer has been in its daily operations, which makes the search engine highly scalable for visual contents at a low cost. Having observed productivity improvement of upper-level applications in the search engine, we believe our system framework would generally benefit other data processing applications, 
    more » « less
  4. European Language Resources Association (Ed.)
    Conspiracy theories have found a new channel on the internet and spread by bringing together like-minded people, thus functioning as an echo chamber. The new 88-million word corpus Language of Conspiracy (LOCO) was created with the intention to provide a text collection to study how the language of conspiracy differs from mainstream language. We use this corpus to develop a robust annotation scheme that will allow us to distinguish between documents containing conspiracy language and documents that do not contain any conspiracy content or that propagate conspiracy theories via misinformation (which we explicitly disregard in our work). We find that focusing on indicators of a belief in a conspiracy combined with textual cues of conspiracy language allows us to reach a substantial agreement (based on Fleiss’ kappa and Krippendorff’s alpha). We also find that the automatic retrieval methods used to collect the corpus work well in finding mainstream documents, but include some documents in the conspiracy category that would not belong there based on our definition. 
    more » « less
  5. Conspiracy theories have found a new channel on the internet and spread by bringing together like-minded people, thus functioning as an echo chamber. The new 88-million word corpus \textit{Language of Conspiracy} (LOCO) was created with the intention to provide a text collection to study how the language of conspiracy differs from mainstream language. We use this corpus to develop a robust annotation scheme that will allow us to distinguish between documents containing conspiracy language and documents that do not contain any conspiracy content or that propagate conspiracy theories via misinformation (which we explicitly disregard in our work). We find that focusing on indicators of a belief in a conspiracy combined with textual cues of conspiracy language allows us to reach a substantial agreement (based on Fleiss{'} kappa and Krippendorff{'}s alpha). We also find that the automatic retrieval methods used to collect the corpus work well in finding mainstream documents, but include some documents in the conspiracy category that would not belong there based on our definition. 
    more » « less