Visual contents, including images and videos, are dominant on the Internet today. The conventional search engine is mainly designed for textual documents, which must be extended to process and manage increasingly high volumes of visual data objects.In this paper, we present Mixer, an effective system to identify and analyze visual contents and to extract their features for data retrievals, aiming at addressing two critical issues: (1) efficiently and timely understanding visual contents, (2) retrieving them at high precision and recall rates without impairing the performance. In Mixer, the visual objects are categorized into different classes, each of which has representativemore »
Mixer: efficiently understanding and retrieving visual content at web-scale
Visual contents, including images and videos, are dominant on the Internet today. The conventional search engine is mainly designed for textual documents, which must be extended to process and manage increasingly high volumes of visual data objects. In this paper, we present Mixer, an effective system to identify and analyze visual contents and to extract their features for data retrievals, aiming at addressing two critical issues: (1) efficiently and timely understanding visual contents, (2) retrieving them at high precision and recall rates without impairing the performance. In Mixer, the visual objects are categorized into different classes, each of which has representative visual features. Subsystems for model production and model execution are developed. Two retrieval layers are designed and implemented for images and videos, respectively. In this way, we are able to perform aggregation retrievals of the two types in efficient ways. The experiments with Baidu's production workloads and systems show that Mixer halves the model production time and raises the feature production throughput by 9.14x. Mixer also achieves the precision and recall of video retrievals at 95% and 97%, respectively. Mixer has been in its daily operations, which makes the search engine highly scalable for visual contents at a low more »
- Award ID(s):
- 2005884
- Publication Date:
- NSF-PAR ID:
- 10321055
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2150-8097
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to differentmore »
-
Mobile apps are one of the most widely used types of software systems in existence today and more programmers and students learn how to develop them everyday. One of the most popular resources for learning mobile programming are videos hosted on social platforms such as YouTube. While useful, this type of resource has also its limitations, especially when developers are looking for user interface (UI) designs for mobile applications, since these are hard to search for and locate in videos. We propose UIScreens, a web-based analysis and search engine that analyzes the visual contents of mobile programming video tutorials, thenmore »
-
Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parametersmore »
-
Abstract Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partialmore »