We provide an overview and update on initiatives and approaches to add taxonomic data intelligence to distributed biodiversity knowledge networks. "Taxonomic intelligence" for biodiversity data is defined here as the ability to identify and renconcile source-contextualized taxonomic name-to-meaning relationships (Remsen 2016). We review the scientific opportunities, as well as information-technological and socio-economic pathways - both existing and envisioned - to embed de-centralized taxonomic data intelligence into the biodiversity data publication and knowledge intedgration processes. We predict that the success of this project will ultimately rest on our ability to up-value the roles and recognition of systematic expertise and experts in large, aggregated data environments. We will argue that these environments will need to adhere to criteria for responsible data science and interests of coherent communities of practice (Wenger 2000, Stoyanovich et al. 2017). This means allowing for fair, accountable, and transparent representation and propagation of evolving systematic knowledge and enduring or newly apparent conflict in systematic perspective (Sterner and Franz 2017, Franz and Sterner 2018, Sterner et al. 2019). We will demonstrate in principle and through concrete use cases, how to de-centralize systematic knowledge while maintaining alignments between congruent or concflicting taxonomic concept labels (Franz et al. 2016a, Franz et al. 2016b, Franz et al. 2019). The suggested approach uses custom-configured logic representation and reasoning methods, based on the Region Connection Calculus (RCC-5) alignment language. The approach offers syntactic consistency and semantic applicability or scalability across a wide range of biodiversity data products, ranging from occurrence records to phylogenomic trees. We will also illustrate how this kind of taxonomic data intelligence can be captured and propagated through existing or envisioned metadata conventions and standards (e.g., Senderov et al. 2018). Having established an intellectual opportunity, as well as a technical solution pathway, we turn to the issue of developing an implementation and adoption strategy. Which biodiversity data environments are currently the most taxonomically intelligent, and why? How is this level of taxonomic data intelligence created, maintained, and propagated outward? How are taxonomic data intelligence services motivated or incentivized, both at the level of individuals and organizations? Which "concerned entities" within the greater biodiversity data publication enterprise are best positioned to promote such services? Are the most valuable lessons for biodiversity data science "hidden" in successful social media applications? What are good, feasible, incremental steps towards improving taxonomic data intelligence for a diversity of data publishers?
more »
« less
Redesigning the Trading Zone between Systematics and Conservation: Insights from Malagasy mouse lemur classifications, 1982 to present
Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whether the systematic knowledge can vary at a given time and/or evolve over time, but whether these signal dynamics are tractable in ways that actors can translate into robust maxims for conservation. Redesigning the trading zone should rest on the (historically validated) projection that systematics will continue to attract generations of inspired, productive researchers and broad-based societal support, frequently leading to protracted conflicts and dramatic shifts in how practioners in the field organize and identify organismal lineages subject to conservation. This confident outlook for systematics' future, in turn, should refocus the challenge of designing the trading zone as one of building better information services to model the concurrent conflicts and longer-term evolution of systematic knowledge. It would seem unreasonable to expect the International Union for Conservation of Nature (IUCN) Red List Index to develop better data science models for the dynamics of systematic knowledge (cf. Hoffmann et al. 2011) than are operational in the most reputable information systems designed and used by domain experts (Burgin et al. 2018). The reasonable challenge from conservation to systematics is not to stop being a science but to be a better data science. In this paper, we will review advances in biodiversity data science in relation to representing and reasoning over changes in systematic knowledge with computational logic, i.e., modeling systematic intelligence (Franz et al. 2016). We stress-test this approach with a use case where rapid systematic signal change and high stakes for conservation action intersect, i.e., the Malagasy mouse lemurs ( Microcebus É. Geoffroy, 1834 sec. Schüßler et al. 2020), where the number of recognized species-level concepts has risen from 2 to 25 in the span of 38 years (1982–2020). As much as scientifically defensible, we extend our modeling approach to the level of individual published occurrence records, where the inability to do so sometimes reflects substandard practice but more importantly reveals systemic inadequacies in biodiversity data science or informational modeling. In the absence of shared, sound theoretical foundations to assess taxonomic congruence or incongruence across treatments, and in the absence of biodiversity data platforms capable of propagating logic-enabled, scalable occurrence-to-concept identification events to produce alternative and succeeding distribution maps, there is no robust way to provide a knowledge signal from systematics to conservation that is both consistent in its syntax and acccurate in its semantics, in the sense of accurately reflecting the variation and uncertainty that exists across multiple systematic perspectives. Translating this diagnosis into new designs for the trading zone is only one "half" of the solution, i.e., a technical advancement that then would need to be socially endorsed and incentivized by systematic and conservation communities motivated to elevate their collaborative interactions and trade robustly in inherently variable and uncertain information.
more »
« less
- Award ID(s):
- 1827993
- PAR ID:
- 10302881
- Date Published:
- Journal Name:
- Biodiversity Information Science and Standards
- Volume:
- 4
- ISSN:
- 2535-0897
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The strengthening and enhancement of capacity are stated goals of several international ocean law and policy instruments that focus on biodiversity conservation, fisheries management, sustainable development, pollution, mineral extraction, traditional knowledge, and ocean science. Yet, achieving these goals has proved elusive, as illustrated by persisting divides in capacity and technology (Amon et al., 2022a; Bell et al., 2023). This has led to the emergence of new terminology, such as capacity sharing, which reflects the need for evolving practices away from unidirectional approaches and toward equitable partnerships (Harden-Davies et al., 2022) that recognize the value of existing knowledge (scientific or not), as well as practices and values held by a community (Spalding et al., 2023).more » « less
-
Marine litter represents a critical environmental challenge that reflects systemic unsustainability. It calls for a reexamination of social structures, resource management, materials life cycles, consumption patterns, waste production, and strategies to manage debris (Scrich et al., 2024). With far-reaching socioeconomic and ecological impacts that threaten human health, coastal livelihoods, and marine biodiversity (GESAMP, 2015, 2020), nations must prioritize marine litter mitigation (Lau et al., 2020)—an imperative reinforced by the United Nations Decade of Ocean Science for Sustainable Development (2021–2030). In response, courses such as those among the Massive Open Online Courses (MOOCs) offered by the United Nations Environment Programme (UNEP) and the Global Partnership on Plastic Pollution and Marine Litter (GPML) have become vital tools for effective capacity building and knowledge sharing. They empower stakeholders to implement sustainable solutions and provide a path for overcoming global challenges and achieving long-term sustainability (IOC-UNESCO, 2020).more » « less
-
null (Ed.)“What is crucial for your ability to communicate with me… pivots on the recipient’s capacity to interpret—to make good inferential sense of the meanings that the declarer is able to send” (Rescher 2000, p148). Conventional approaches to reconciling taxonomic information in biodiversity databases have been based on string matching for unique taxonomic name combinations (Kindt 2020, Norman et al. 2020). However, in their original context, these names pertain to specific usages or taxonomic concepts, which can subsequently vary for the same name as applied by different authors. Name-based synonym matching is a helpful first step (Guala 2016, Correia et al. 2018), but may still leave considerable ambiguity regarding proper usage (Fig. 1). Therefore, developing "taxonomic intelligence" is the bioinformatic challenge to adequately represent, and subsequently propagate, this complex name/usage interaction across trusted biodiversity data networks. How do we ensure that senders and recipients of biodiversity data not only can share messages but do so with “good inferential sense” of their respective meanings? Key obstacles have involved dealing with the complexity of taxonomic name/usage modifications through time, both in terms of accounting for and digitally representing the long histories of taxonomic change in most lineages. An important critique of proposals to use name-to-usage relationships for data aggregation has been the difficulty of scaling them up to reach comprehensive coverage, in contrast to name-based global taxonomic hierarchies (Bisby 2011). The Linnaean system of nomenclature has some unfortunate design limitations in this regard, in that taxonomic names are not unique identifiers, their meanings may change over time, and the names as a string of characters do not encode their proper usage, i.e., the name “Genus species” does not specify a source defining how to use the name correctly (Remsen 2016, Sterner and Franz 2017). In practice, many people provide taxonomic names in their datasets or publications but not a source specifying a usage. The information needed to map the relationships between names and usages in taxonomic monographs or revisions is typically not presented it in a machine-readable format. New approaches are making progress on these obstacles. Theoretical advances in the representation of taxonomic intelligence have made it increasingly possible to implement efficient querying and reasoning methods on name-usage relationships (Chen et al. 2014, Chawuthai et al. 2016, Franz et al. 2015). Perhaps most importantly, growing efforts to produce name-usage mappings on a medium scale by data providers and taxonomic authorities suggest an all-or-nothing approach is not required. Multiple high-profile biodiversity databases have implemented internal tools for explicitly tracking conflicting or dynamic taxonomic classifications, including eBird using concept relationships from AviBase (Lepage et al. 2014); NatureServe in its Biotics database; iNaturalist using its taxon framework (Loarie 2020); and the UNITE database for fungi (Nilsson et al. 2019). Other ongoing projects incorporating taxonomic intelligence include the Flora of Alaska (Flora of Alaska 2020), the Mammal Diversity Database (Mammal Diversity Database 2020) and PollardBase for butterfly population monitoring (Campbell et al. 2020).more » « less
-
Abstract Biodiversity scientists must be fluent across disciplines; they must possess the quantitative, computational, and data skills necessary for working with large, complex data sets, and they must have foundational skills and content knowledge from ecology, evolution, taxonomy, and systematics. To effectively train the emerging workforce, we must teach science as we conduct science and embrace emerging concepts of data acumen alongside the knowledge, tools, and techniques foundational to organismal biology. We present an open education resource that updates the traditional plant collection exercise to incorporate best practices in twenty-first century collecting and to contextualize the activities that build data acumen. Students exposed to this resource gained skills and content knowledge in plant taxonomy and systematics, as well as a nuanced understanding of collections-based data resources. We discuss the importance of the extended specimen in fostering scientific discovery and reinforcing foundational concepts in biodiversity science, taxonomy, and systematics.more » « less
An official website of the United States government

