Abstract Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. 
                        more » 
                        « less   
                    
                            
                            Potential Future Lake Drainage for the Western Arctic Coastal Plain in northern Alaska from an Interferometric Synthetic Aperture Radar (IFSAR)-Derived Digital Surface Model, 2002-2003
                        
                    
    
            Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface and the lowest elevation within a 100 m buffer of the lake shoreline exceeded our chosen threshold of 0.6 m. Next, we selected lakes with a minimum size of 10 ha to match the historic lake drainage dataset. We further filtered the dataset by selecting lakes estimated to have low hydrological connectivity based on relations between lake contributing area as determined for specific surficial geology types and presented in Jones et al. (2017). This was added to the future projection workflow to isolate the lake population that likely responds to changes in surface area driven largely by geomorphic change as opposed to differences in surface hydrology. Lakes within a basin with low to no hydrologic connectivity that had an elevation change gradient between the lake surface and surrounding landscape are considered likely locations to assess for future drainage potential. Further, the greater the elevation difference, the greater the drainage potential. This dataset provided a first-order estimate of lakes classified as being prone to future drainage. We further refined our assessment of potential drainage lakes by identifying the location of the point with the lowest elevation within the 100 m buffer of the lake shoreline and manually interpreted lakes to have a high drainage potential based on the location of the likely drainage point to known lake drainage pathways using circa 2002 orthophotography or more recent high resolution satellite imagery available for the Western Coastal Arctic Plain (WACP). Lakes classified as having a high drainage potential typically had the likely drainage location associated with one or more of the following: (1) an adjacent lake, (2) the cutbank of a river, (3) the ocean, (4) were located in an area with dense ice-wedge networks, (5) appeared to coincide with a potentially headward eroding stream, or (6) were associated with thermokarst lake shoreline processes in the moderate to high ground ice content terrain. We also added information on potential lake drainage pathways to the high potential drainage dataset by manually interpreting the landform associated with the likely drainage site to draw comparisons with the historic lake drainage dataset. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1806213
- PAR ID:
- 10303027
- Publisher / Repository:
- Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Arctic Lake Lake Drainage Drained Lake Basin Thermokarst Lake
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This data set covers the younger outer coastal plain north of Teshekpuk Lake, North Slope, Alaska. In this region, drained lake basins are abundant features, covering large parts of the landscape. This data set is based on Landsat Thematic Mapper (TM) imagery acquired in August 2010, and a 5 meter (m) resolution Interferometric Synthetic Aperture Radar (IfSAR)-derived digital terrain model. Drained lake basins were manually delineated in a geographic information system (GIS). The data set includes Lake 195, which drained in this area in 2014. For further details please see Jones et al. (2015): Jones, BM, and Arp, CD (2015), Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafrost and Periglac. Process., 26, 119– 128. doi: 10.1002/ppp.1842.more » « less
- 
            This data set covers the younger outer coastal plain north of Teshekpuk Lake, North Slope, Alaska. In this region, drained lake basins are abundant features, covering large parts of the landscape. This data set is based on Landsat Thematic Mapper (TM) imagery acquired in August 2010, and a 5 meter (m) resolution Interferometric Synthetic Aperture Radar (IfSAR)-derived digital terrain model. Drained lake basins were manually delineated in a geographic information system (GIS). The data set includes Lake 195, which drained in this area in 2014. For further details please see Jones et al. (2015): Jones, BM, and Arp, CD (2015), Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafrost and Periglac. Process., 26, 119– 128. doi: 10.1002/ppp.1842.more » « less
- 
            Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 19 and 20 July 2022 at the Bugeye Lakes Complex on the Arctic Coastal Plain of northern Alaska. 5,968 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 320 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature.more » « less
- 
            Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 20 July 2022 at Novo Basin on the Arctic Coastal Plain of northern Alaska. 332 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 43 hectares (ha). The drone system was flown at 100 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
