skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species
Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen.  more » « less
Award ID(s):
1656265
PAR ID:
10303153
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
22
Issue:
19
ISSN:
1422-0067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Heterostyly distinct hermaphroditic floral morphs enforce outbreeding. Morphs differ structurally, promote cross-pollination, and physiologically block self-fertilization. In Turnera the self-incompatibility (S)-locus controlling heterostyly possesses three genes specific to short-styled morph genomes. Only one gene, TsBAHD, is expressed in pistils and this has been hypothesized to possess brassinosteroid (BR)-inactivating activity. We tested this hypothesis using heterologous expression in Arabidopsis thaliana as a bioassay, thereby assessing growth phenotype, and the impacts on the expression of endogenous genes involved in BR homeostasis and seedling photomorphogenesis. Transgenic A. thaliana expressing TsBAHD displayed phenotypes typical of BR-deficient mutants, with phenotype severity dependent on TsBAHD expression level. BAS1, which encodes an enzyme involved in BR inactivation, was downregulated in TsBAHD-expressing lines. CPD and DWF, which encode enzymes involved in BR biosynthesis, were upregulated. Hypocotyl growth of TsBAHD dwarfs responded to application of brassinolide in light and dark in a manner typical of plants over-expressing genes encoding BR-inactivating activity. These results provide empirical support for the hypothesis that TsBAHD possesses BR-inactivating activity. Further this suggests that style length in Turnera is controlled by the same mechanism (BR inactivation) as that reported for Primula, but using a different class of enzyme. This reveals interesting convergent evolution in a biochemical mechanism to regulate floral form in heterostyly. 
    more » « less
  2. null (Ed.)
    Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera possesses three S-genes, namely TsBAHD (controlling pistil characters), TsYUC6, and TsSPH1 (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of T. subulata to investigate hypothesized S-gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of TsBAHD. In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of TsYUC6. Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting S-gene activities intersect with a signaling hub. Interestingly, distinct S-genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor (PIF) network hubs which mediate red/far-red light signaling. We propose that modification of the activities of PIF hubs by the S-locus could be a common theme in the evolution of heterostyly. 
    more » « less
  3. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S2-haplotype and S3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1–Cullin1– F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1, and examined the SI behavior of a T0 plant (S2S3) with biallelic mutations in the pollen genome and two progeny plants (S2S2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise compatible S-genotypes, but fully compatible with pistils of an S3S3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI, and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination. 
    more » « less
  4. Three cross-incompatibility loci each control a distinct reproductive barrier in both domesticated maize (Zea mays ssp. mays) and its wild teosinte relatives. These three loci, Teosinte crossing barrier1 (Tcb1), Gametophytic factor1 (Ga1), and Ga2, each play a key role in preventing hybridization between incompatible populations and are proposed to maintain the barrier between domesticated and wild subspecies. Each locus encodes both a silk-active and a matching pollen-active pectin methylesterase (PMEs). To investigate the diversity and molecular evolution of these gametophytic factor loci, we identified existing and improved models of the responsible genes in a new genome assembly of maize line P8860 that contains active versions of all three loci. We then examined fifty-two assembled genomes from seventeen species to classify haplotype diversity and identify sites under diversifying selection during the evolution of these genes. We show that Ga2, the oldest of these three loci, was duplicated to form Ga1 at least 12 million years ago. Tcb1, the youngest locus, arose as a duplicate of Ga1 before or around the time of diversification of the Zea genus. We find evidence of positive selection during evolution of the functional genes at an active site in the pollen-expressed PME and predicted surface sites in both the silk- and pollen-expressed PMEs. The most common allele at the Ga1 locus is a conserved ga1 allele (ga1-Off), which is a specific haplotype containing three full-length PME gene copies, all of which are non-coding due to conserved stop codons and are between 610 thousand and 1.5 million years old. We show that the ga1-Off allele is associated with and likely generates 24-nt siRNAs in developing pollen-producing tissue, and these siRNAs map to functional Ga1 alleles. In previously-published crosses, the ga1-Off allele was associated with reduced function of the typically dominant functional alleles for the Ga1 and Tcb1 barriers. Taken together, this seems to be an example of a type of epigenetic trans-homolog silencing known as paramutation, functioning at a locus controlling a reproductive barrier. 
    more » « less
  5. Abstract Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring 1 . Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen 2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils 1,4–6 . The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S -locus cysteine-rich protein/ S -locus protein 11 (SCR/SP11) 2,3 or a signal from UI pollen binds to the SI female determinant S -locus receptor kinase (SRK) 2,3 , recruits FERONIA (FER) 7–9 and activates FER-mediated reactive oxygen species production in SI stigmas 10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class 12–14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops. 
    more » « less