skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian topological signal processing
Topological data analysis encompasses a broad set of techniques that investigate the shape of data. One of the predominant tools in topological data analysis is persistent homology, which is used to create topological summaries of data called persistence diagrams. Persistent homology offers a novel method for signal analysis. Herein, we aid interpretation of the sublevel set persistence diagrams of signals by 1) showing the effect of frequency and instantaneous amplitude on the persistence diagrams for a family of deterministic signals, and 2) providing a general equation for the probability density of persistence diagrams of random signals via a pushforward measure. We also provide a topologically-motivated, efficiently computable statistical descriptor analogous to the power spectral density for signals based on a generalized Bayesian framework for persistence diagrams. This Bayesian descriptor is shown to be competitive with power spectral densities and continuous wavelet transforms at distinguishing signals with different dynamics in a classification problem with autoregressive signals.  more » « less
Award ID(s):
1821241
PAR ID:
10303156
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Discrete & Continuous Dynamical Systems - S
Volume:
0
Issue:
0
ISSN:
1937-1179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Persistent homology is constrained to purely topological persistence, while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified low‐dimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high‐dimensional datasets. For a point‐cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, that is, the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non‐harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerene stability is predicted by using both harmonic spectra and non‐harmonic persistent spectra, while the latter spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B‐factors for which current popular biophysical models break down. 
    more » « less
  2. Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.F.; and Lin, H. (Ed.)
    Persistent homology has become an important tool for extracting geometric and topological features from data, whose multi-scale features are summarized in a persistence diagram. From a statistical perspective, however, persistence diagrams are very sensitive to perturbations in the input space. In this work, we develop a framework for constructing robust persistence diagrams from superlevel filtrations of robust density estimators constructed using reproducing kernels. Using an analogue of the influence function on the space of persistence diagrams, we establish the proposed framework to be less sensitive to outliers. The robust persistence diagrams are shown to be consistent estimators in the bottleneck distance, with the convergence rate controlled by the smoothness of the kernel — this, in turn, allows us to construct uniform confidence bands in the space of persistence diagrams. Finally, we demonstrate the superiority of the proposed approach on benchmark datasets. 
    more » « less
  3. Topological Data Analysis (TDA) studies the “shape” of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K = (V, E) in R^2, i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less
  4. Topological Data Analysis (TDA) studies the shape of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukeherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K=(V,E) in R^2 , i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less
  5. As the field of Topological Data Analysis continues to show success in theory and in applications, there has been increasing interest in using tools from this field with methods for machine learning. Using persistent homology, specifically persistence diagrams, as inputs to machine learning techniques requires some mathematical creativity. The space of persistence diagrams does not have the desirable properties for machine learning, thus methods such as kernel methods and vectorization methods have been developed. One such featurization of persistence diagrams by Perea, Munch and Khasawneh uses continuous, compactly supported functions, referred to as "template functions," which results in a stable vector representation of the persistence diagram. In this paper, we provide a method of adaptively partitioning persistence diagrams to improve these featurizations based on localized information in the diagrams. Additionally, we provide a framework to adaptively select parameters required for the template functions in order to best utilize the partitioning method. We present results for application to example data sets comparing classification results between template function featurizations with and without partitioning, in addition to other methods from the literature. 
    more » « less