Abstract Biological introductions are unintended “natural experiments” that provide unique insights into evolutionary processes. Invasive phytophagous insects are of particular interest to evolutionary biologists studying adaptation, as introductions often require rapid adaptation to novel host plants. However, adaptive potential of invasive populations may be limited by reduced genetic diversity—a problem known as the “genetic paradox of invasions”. One potential solution to this paradox is if there are multiple invasive waves that bolster genetic variation in invasive populations. Evaluating this hypothesis requires characterizing genetic variation and population structure in the invaded range. To this end, we assemble a reference genome and describe patterns of genetic variation in the introduced white pine sawfly, Diprion similis. This species was introduced to North America in 1914, where it has rapidly colonized the thin-needled eastern white pine (Pinus strobus), making it an ideal invasion system for studying adaptation to novel environments. To evaluate evidence of multiple introductions, we generated whole-genome resequencing data for 64 D. similis females sampled across the North American range. Both model-based and model-free clustering analyses supported a single population for North American D. similis. Within this population, we found evidence of isolation-by-distance and a pattern of declining heterozygosity with distance from the hypothesized introduction site. Together, these results support a single-introduction event. We consider implications of these findings for the genetic paradox of invasion and discuss priorities for future research in D. similis, a promising model system for invasion biology.
more »
« less
Genomic variation in the American pika: signatures of geographic isolation and implications for conservation
Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika ( Ochotona princeps ), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θ W = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θ W = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θ W = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites ( D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.
more »
« less
- Award ID(s):
- 1637686
- PAR ID:
- 10303157
- Date Published:
- Journal Name:
- BMC Ecology and Evolution
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 2730-7182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding patterns and mechanisms underlying local adaptation is becoming increasingly important for species conservation amid anthropogenically driven environmental change. Alpine systems are experiencing particularly intense pressure from environmental change resulting from increased rates of warming and corresponding loss of snow and ice. We integrate morphological and genetic analyses to identify traits important for local adaptation in one of the highest elevation breeding birds in North America, the Sierra Nevada Gray-crowned Rosy Finch. We performed an in-depth analysis of how traits with known links to thermoregulation in birds such as wing length, bill size, and feather microstructure vary between two populations at sites with contrasting climate and environmental conditions. We identified loci underlying these traits using a genome-wide association study and further examined regions of the genome related to altitude adaptation and cold tolerance using F ST outlier tests. Together, these results indicate that temperature, food availability, and alpine landscape features may impose multifaceted and potentially conflicting selective pressures on morphological traits important to adaptation in alpine birds. Overall, this work represents one of the first in-depth analyses of the genetic basis of adaptation in an alpine specialist songbird.more » « less
-
Abstract Background Microbes and their viruses are hidden engines driving Earth’s ecosystems from the oceans and soils to humans and bioreactors. Though gene marker approaches can now be complemented by genome-resolved studies of inter-(macrodiversity) and intra-(microdiversity) population variation, analytical tools to do so remain scattered or under-developed. Results Here, we introduce MetaPop, an open-source bioinformatic pipeline that provides a single interface to analyze and visualize microbial and viral community metagenomes at both the macro - and microdiversity levels. Macrodiversity estimates include population abundances and α- and β-diversity. Microdiversity calculations include identification of single nucleotide polymorphisms, novel codon-constrained linkage of SNPs, nucleotide diversity ( π and θ ), and selective pressures (pN/pS and Tajima’s D ) within and fixation indices ( F ST ) between populations. MetaPop will also identify genes with distinct codon usage. Following rigorous validation, we applied MetaPop to the gut viromes of autistic children that underwent fecal microbiota transfers and their neurotypical peers. The macrodiversity results confirmed our prior findings for viral populations (microbial shotgun metagenomes were not available) that diversity did not significantly differ between autistic and neurotypical children. However, by also quantifying microdiversity, MetaPop revealed lower average viral nucleotide diversity ( π ) in autistic children. Analysis of the percentage of genomes detected under positive selection was also lower among autistic children, suggesting that higher viral π in neurotypical children may be beneficial because it allows populations to better “bet hedge” in changing environments. Further, comparisons of microdiversity pre- and post-FMT in autistic children revealed that the delivery FMT method (oral versus rectal) may influence viral activity and engraftment of microdiverse viral populations, with children who received their FMT rectally having higher microdiversity post-FMT. Overall, these results show that analyses at the macro level alone can miss important biological differences. Conclusions These findings suggest that standardized population and genetic variation analyses will be invaluable for maximizing biological inference, and MetaPop provides a convenient tool package to explore the dual impact of macro - and microdiversity across microbial communities.more » « less
-
ABSTRACT Restoring connectivity via assisted migration is a useful but currently underused approach for maintaining genetic diversity and preventing extirpations of threatened species. The use of assisted migration as a conservation strategy may be limited by the difficulty of balancing the benefits of reconnecting populations (including reduced inbreeding depression and increased adaptive capacity) with the perceived risk of outbreeding depression, which requires comprehensive knowledge of the landscape of adaptive, neutral, deleterious, and structural variation across a species' range. Using a combination of reduced‐representation and whole‐genome sequencing, we characterized genomic diversity and differentiation for the Arkansas Darter (Etheostoma cragini) across its range in the Midwestern US. We found strong population structure and large differences in genetic diversity and effective population sizes across drainages. The strength of genetic isolation by river distance differed among drainages, with landscape type surrounding streams and impoundments also contributing to genetic isolation. Despite low effective population sizes in some populations, there was surprisingly little evidence for recent inbreeding (based on the absence of long runs of homozygosity) or for elevated levels of deleterious variation in smaller populations. Considering neutral, adaptive, deleterious, and structural variation allowed us to identify several potential recipient populations that may benefit from translocations and potential donor sites throughout the range. Planning translocation strategies intended for restored connectivity and possible genetic rescue at earlier stages in species decline will likely increase the probability of retaining genetic diversity and population persistence over the long term while minimizing risks associated with translocation.more » « less
-
Abstract The crop wild relative Fragaria nilgerrensis is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries made in this species could serve as a useful guide in the development of new superior strawberry cultivars that are resilient to new or variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the distribution range in China to investigate the genetic diversity, population structure and genomic basis of local adaptation. We identified four genetic groups, with the western group located in Hengduan Mountains exhibiting the highest genetic diversity. Redundancy analysis suggested that both environment and geographic variables shaped a significant proportion of the genomic variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic distance. This suggests that adaptation to distinct habitats, which present a unique combination of abiotic factors, likely drove genetic differentiation. Lastly, by implementing selective sweep scans and genome–environment association analysis throughout the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate genes in F. nilgerrensis.more » « less
An official website of the United States government

