Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.
more »
« less
Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis
Abstract The crop wild relative Fragaria nilgerrensis is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries made in this species could serve as a useful guide in the development of new superior strawberry cultivars that are resilient to new or variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the distribution range in China to investigate the genetic diversity, population structure and genomic basis of local adaptation. We identified four genetic groups, with the western group located in Hengduan Mountains exhibiting the highest genetic diversity. Redundancy analysis suggested that both environment and geographic variables shaped a significant proportion of the genomic variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic distance. This suggests that adaptation to distinct habitats, which present a unique combination of abiotic factors, likely drove genetic differentiation. Lastly, by implementing selective sweep scans and genome–environment association analysis throughout the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate genes in F. nilgerrensis.
more »
« less
- Award ID(s):
- 2029959
- PAR ID:
- 10380825
- Date Published:
- Journal Name:
- Horticulture Research
- Volume:
- 9
- ISSN:
- 2052-7276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)High rates of dispersal can breakdown coadapted gene complexes. However, concentrated genomic architecture (i.e., genomic islands of divergence) can suppress recombination to allow evolution of local adaptations despite high gene flow. Pacific lamprey (Entosphenus tridentatus) is a highly dispersive anadromous fish. Observed trait diversity and evidence for genetic basis of traits suggests it may be locally adapted. We addressed whether concentrated genomic architecture could influence local adaptation for Pacific lamprey. Using two new whole genome assemblies and genotypes from 7,716 single nucleotide polymorphism (SNP) loci in 518 individuals from across the species range, we identified four genomic islands of divergence (on chromosomes 01, 02, 04, and 22). We determined robust phenotype-by-genotype relationships by testing multiple traits across geographic sites. These trait associations probably explain genomic divergence across the species’ range. We genotyped a subset of 302 broadly distributed SNPs in 2,145 individuals for association testing for adult body size, sexual maturity, migration distance and timing, adult swimming ability, and larval growth. Body size traits were strongly associated with SNPs on chromosomes 02 and 04. Moderate associations also implicated SNPs on chromosome 01 as being associated with variation in female maturity. Finally, we used candidate SNPs to extrapolate a heterogeneous spatiotemporal distribution of these predicted phenotypes based on independent data sets of larval and adult collections. These maturity and body size results guide future elucidation of factors driving regional optimization of these traits for fitness. Pacific lamprey is culturally important and imperiled. This research addresses biological uncertainties that challenge restoration efforts.more » « less
-
ABSTRACT Miscanthusholds a promise as a biocrop due to its high yield, perenniality and ability to grow on infertile soils. However, the current commercial biomass production ofMiscanthusis mostly limited to a single sterile triploid clone ofM.×giganteus. Nevertheless, parental species ofM.×giganteus, MiscanthussacchariflorusandMiscanthussinensiscontain vast genetic diversity for crop improvement. WithM. sacchariflorushaving a natural geographic distribution in cold‐temperate northeast China and eastern Russia, we hypothesised that it has substantial variation in physiological response to chilling. Using a semi‐high‐throughput method, we phenotyped 209M. sacchariflorusgenotypes belonging to six genetic groups for non‐photochemical quenching (NPQ) and photosystem II efficiency (ΦPSII) kinetics under warm and chilling treatments in three growing seasons. In response to the chilling treatment, all genetic groups exhibited an increase in NPQ induction rate indicating faster activation of NPQ in light. Notably, under chilling, the Korea/NE China/Russia 2x and N China 2x groups stood out for the highest NPQ rate in light and the highest steady‐state NPQ in light. This NPQ phenotype may contribute adaptation to chilling during bright, cold mornings of spring and early autumn in temperate climates, when faster NPQ would better protect from oxidative stress. Such enhanced adaptation could expand the growing season and thus productivity at a given location or expand the range of economically viable growing locations to higher latitudes and altitudes. A genome‐wide association study identified 126 unique SNPs associated with NPQ and ΦPSII traits. Among the identified candidate genes were enzymes involved in the ascorbate recycle and shikimate pathway, gamma‐aminobutyric acid and cation efflux transporters. Identifying natural variation and genes involved in NPQ and ΦPSII kinetics considerably enlarges the toolbox for breeding and/or engineeringMiscanthuswith optimised photosynthesis under warm and chilling conditions for sustainable feedstock production for bioenergy. Chilling affects the productivity and geographical distribution of most crops. Using a semi‐high‐throughput approach to investigate photosynthesis‐related traits, we characterised variation existing in the bioenergy cropMiscanthusunder chilling and warm conditions and identified potential genes associated with it. Under chilling, two genetic groups from the northern edge ofMiscanthusdistribution stood out for faster activation of photoprotection. This trait may contribute adaptation to chilling in temperate climates, when faster photoprotection would better defend from oxidative stress. Enhanced chilling adaptation could expand the growing season and thus productivity or enlarge the range of growing locations.more » « less
-
Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass ( Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum , including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum , which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.more » « less
-
ABSTRACT Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome‐wide SNPs and environmental data to examine invasion history and identify genotype–environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion ofUrosalpinx, our study suggests population success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adaptation in the native range and highlights the importance of considering population history and environmental selection pressures when evaluating adaptive capacity.more » « less
An official website of the United States government

