skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Channel activation of CHSH nonlocality
Abstract Quantum channels that break CHSH nonlocality on all input states are known as CHSH-breaking channels. In quantum networks, such channels are useless for distributing correlations that can violate the CHSH Inequality. Motivated by previous work on activation of nonlocality in quantum states, here we demonstrate an analogous activation of CHSH-breaking channels. That is, we show that certain pairs of CHSH-breaking channels are no longer CHSH-breaking when used in combination. We find that this type of activation can emerge in both uni-directional and bi-directional communication scenarios.  more » « less
Award ID(s):
1839177
PAR ID:
10303256
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
4
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 043003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We explore the effect of introducing mild nonlocality into otherwise local, chaotic quantum systems, on the rate of information spreading and associated rates of entanglement generation and operator growth. We consider various forms of nonlocality, both in 1-dimensional spin chain models and in holographic gauge theories, comparing the phenomenology of each. Generically, increasing the level of nonlocality increases the rate of information spreading, but in lattice models we find instances where these rates are slightly suppressed. 
    more » « less
  2. Abstract Two‐way quantum key distribution (QKD) protocols utilize bi‐directional quantum communication to establish a shared secret key. Due to the increased attack surface, security analyses remain challenging. Here a high‐dimensional variant of the Ping Pong protocol is investigated and an information theoretic security analysis in the finite‐key setting is performed. The main contribution in this work is to show a new proof methodology for two‐way quantum key distribution protocols based on the quantum sampling framework of Bouman and Fehr introduced in 2010 and also sampling‐based entropic uncertainty relations introduced by the authors in 2019. The Ping Pong protocol is only investigated here, but these methods may be broadly applicable to other QKD protocols, especially those relying on two‐way channels. Along the way, some fascinating benefits to high‐dimensional quantum states applied to two‐way quantum communication are also showed. 
    more » « less
  3. Abstract Interaction between light and matter results in new quantum states whose energetics can modify chemical kinetics. In the regime of ensemble vibrational strong coupling (VSC), a macroscopic number$$N$$ N of molecular transitions couple to each resonant cavity mode, yielding two hybrid light–matter (polariton) modes and a reservoir of$$N-1$$ N 1 dark states whose chemical dynamics are essentially those of the bare molecules. This fact is seemingly in opposition to the recently reported modification of thermally activated ground electronic state reactions under VSC. Here we provide a VSC Marcus–Levich–Jortner electron transfer model that potentially addresses this paradox: although entropy favors the transit through dark-state channels, the chemical kinetics can be dictated by a few polaritonic channels with smaller activation energies. The effects of catalytic VSC are maximal at light–matter resonance, in agreement with experimental observations. 
    more » « less
  4. Abstract Secret-key distillation from quantum states and channels is a central task of interest in quantum information theory, as it facilitates private communication over a quantum network. Here, we study the task of secret-key distillation from bipartite states and point-to-point quantum channels using local operations and one-way classical communication (one-way LOCC). We employ the resource theory of unextendible entanglement to study the transformation of a bipartite state under one-way LOCC, and we obtain several efficiently computable upper bounds on the number of secret bits that can be distilled from a bipartite state using one-way LOCC channels; these findings apply not only in the one-shot setting but also in some restricted asymptotic settings. We extend our formalism to private communication over a quantum channel assisted by forward classical communication. We obtain efficiently computable upper bounds on the one-shot forward-assisted private capacity of a channel, thus addressing a question in the theory of quantum-secured communication that has been open for some time now. Our formalism also provides upper bounds on the rate of private communication when using a large number of channels in such a way that the error in the transmitted private data decreases exponentially with the number of channel uses. Moreover, our bounds can be computed using semidefinite programs, thus providing a computationally feasible method to understand the limits of private communication over a quantum network. 
    more » « less
  5. Symmetry in mixed quantum states can manifest in two distinct forms: , where each individual pure state in the quantum ensemble is symmetric with the same charge, and , which applies only to the entire ensemble. This paper explores a novel type of spontaneous symmetry breaking (SSB) where a strong symmetry is broken to a weak one. While the SSB of a weak symmetry is measured by the long-ranged two-point correlation function, the strong-to-weak SSB (SWSSB) is measured by the . We prove that SWSSB is a universal property of mixed-state quantum phases, in the sense that the phenomenon of SWSSB is robust against symmetric low-depth local quantum channels. We also show that the symmetry breaking is “spontaneous” in the sense that the effect of a local symmetry-breaking measurement cannot be recovered locally. We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry. Additionally, we study nonthermal scenarios where decoherence induces SWSSB, leading to phase transitions described by classical statistical models with bond randomness. In particular, the SWSSB transition of a decohered Ising model can be viewed as the “ungauged” version of the celebrated toric-code decodability transition. We confirm that, in the decohered Ising model, the SWSSB transition defined by the fidelity correlator is the only physical transition in terms of channel recoverability. We also comment on other (inequivalent) definitions of SWSSB, through correlation functions with higher Rényi indices. Published by the American Physical Society2025 
    more » « less