We study quantum many-body mixed states with a symmetry from the perspective of , i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-state phases and associated separability phase transitions, which also provides an alternative perspective on recently discussed “average symmetry-protected topological order.” We also study decohered superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity–preserving decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property, such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of such systems exhibits a temperature-tuned separability transition. Published by the American Physical Society2024
more »
« less
This content will become publicly available on March 1, 2026
Strong-to-Weak Spontaneous Symmetry Breaking in Mixed Quantum States
Symmetry in mixed quantum states can manifest in two distinct forms: , where each individual pure state in the quantum ensemble is symmetric with the same charge, and , which applies only to the entire ensemble. This paper explores a novel type of spontaneous symmetry breaking (SSB) where a strong symmetry is broken to a weak one. While the SSB of a weak symmetry is measured by the long-ranged two-point correlation function, the strong-to-weak SSB (SWSSB) is measured by the . We prove that SWSSB is a universal property of mixed-state quantum phases, in the sense that the phenomenon of SWSSB is robust against symmetric low-depth local quantum channels. We also show that the symmetry breaking is “spontaneous” in the sense that the effect of a local symmetry-breaking measurement cannot be recovered locally. We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry. Additionally, we study nonthermal scenarios where decoherence induces SWSSB, leading to phase transitions described by classical statistical models with bond randomness. In particular, the SWSSB transition of a decohered Ising model can be viewed as the “ungauged” version of the celebrated toric-code decodability transition. We confirm that, in the decohered Ising model, the SWSSB transition defined by the fidelity correlator is the only physical transition in terms of channel recoverability. We also comment on other (inequivalent) definitions of SWSSB, through correlation functions with higher Rényi indices. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2339319
- PAR ID:
- 10586214
- Publisher / Repository:
- The American Physical Society
- Date Published:
- Journal Name:
- PRX Quantum
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2691-3399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic transport, a realistic model for this state has been lacking. We show that the standard model of particles in the lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential. Using exact diagonalization and variational wave functions, we demonstrate that the FQH nematic transition occurs when the system’s neutral gap closes in the long-wavelength limit while the charge gap remains open. We confirm the symmetry-breaking nature of the transition by demonstrating the existence of a “circular moat” potential in the manifold of states with broken rotational symmetry, while its geometric character is revealed through the strong fluctuations of the nematic susceptibility and Hall viscosity. Published by the American Physical Society2024more » « less
-
Realistic quantum systems are affected by environmental loss, which is often seen as detrimental for applications in quantum technologies. Alternatively, weak coupling to an environment can aid in stabilizing highly entangled and mixed states, but determining optimal system-environment parameters can be challenging. Here, we describe a technique to optimize parameters for generating desired nonequilibrium steady states (NESSs) in driven-dissipative quantum systems governed by the Lindblad equation. We apply this approach to predict highly entangled and mixed NESSs in Ising, Kitaev, and Dicke models in several quantum phases. Published by the American Physical Society2025more » « less
-
The transport and capture of photo-induced electronic excitations is of fundamental interest to the design of energy efficient quantum technologies and to the study of potential quantum effects in biology. Using a simple quantum optical model, we examine the influence of coherence, entanglement, and cooperative dissipation on the transport and capture of excitation energy. We demonstrate that the rate of energy extraction is optimized under conditions that minimize the quantum coherence and entanglement of the system, which is a consequence of spontaneous parity time-reversal symmetry breaking. We then examine the effects of vibrational disorder and show that dephasing can be used to enhance the transport of delocalized excitations in settings relevant to biological photosynthesis. Our results highlight the rich, emergent behavior associated with the quantum-to-classical transition with relevance to the design of room-temperature quantum devices. Published by the American Physical Society2024more » « less
-
In this study, we present an exploration of spontaneous symmetry breaking and pattern formation in the driven-dissipative system of Rydberg exciton polaritons with long-range interactions. Our investigation unravels the pattern formations through modulational instability, characterized by scales in the micron range. We observe the dynamics of the polariton ensemble, studying the emergence of metastable patterns and their eventual collapse in the long-time limit. This phenomenon is attributed to the destructive interference between the polariton state and the external drive within the ensemble. Further, we delineate conditions conducive to the stable formation of patterns under incoherent pumping. These findings open up various avenues for delving into the burgeoning realm of driven-dissipative and long-range interacting gases through the unique characteristics of Rydberg excitons. Published by the American Physical Society2024more » « less
An official website of the United States government
