skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistical approach to quantum phase estimation
Abstract We introduce a new statistical and variational approach to the phase estimation algorithm (PEA). Unlike the traditional and iterative PEAs which return only an eigenphase estimate, the proposed method can determine any unknown eigenstate–eigenphase pair from a given unitary matrix utilizing a simplified version of the hardware intended for the iterative PEA (IPEA). This is achieved by treating the probabilistic output of an IPEA-like circuit as an eigenstate–eigenphase proximity metric, using this metric to estimate the proximity of the input state and input phase to the nearest eigenstate–eigenphase pair and approaching this pair via a variational process on the input state and phase. This method may search over the entire computational space, or can efficiently search for eigenphases (eigenstates) within some specified range (directions), allowing those with some prior knowledge of their system to search for particular solutions. We show the simulation results of the method with the Qiskit package on the IBM Q platform and on a local computer.  more » « less
Award ID(s):
1839191
PAR ID:
10303333
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
23
Issue:
11
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 113027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This thesis investigates quantum algorithms for eigenstate preparation, with a primary focus on solving eigenvalue problems such as the Schrodinger equation by utilizing near-term quantum computing devices. These problems are ubiquitous in several scientific fields, but more accurate solutions are specifically needed as a prerequisite for many quantum simulation tasks. To address this, we establish three methods in detail: quantum adiabatic evolution with optimal control, the Rodeo Algorithm, and the Variational Rodeo Algorithm.The first method explored is adiabatic evolution, a technique that prepares quantum states by simulating a quantum system that evolves slowly over time. The adiabatic theorem can be used to ensure that the system remains in an eigenstate throughout the process, but its implementation can often be infeasible on current quantum computing hardware. We employ a unique approach using optimal control to create custom gate operations for superconducting qubits and demonstrate the algorithm on a two-qubit IBM cloud quantum computing device. We then explore an alternative to adiabatic evolution, the Rodeo Algorithm, which offers a different approach to eigenstate preparation by using a controlled quantum evolution that selectively filters out undesired components in the wave function stored on a quantum register. We show results suggesting that this method can be effective in preparing eigenstates, but its practicality is predicated on the preparation of an initial state that has significant overlap with the desired eigenstate. To address this, we introduce the novel Variational Rodeo Algorithm, which replaces the initialization step with dynamic optimization of quantum circuit parameters to increase the success probability of the Rodeo Algorithm. The added flexibility compensates for instances in which the original algorithm can be unsuccessful, allowing for better scalability. This research seeks to contribute to a deeper understanding of how quantum algorithms can be employed to attain efficient and accurate solutions to eigenvalue problems. The overarching goal is to present ideas that can be used to improve understanding of nuclear physics by providing potential quantum and classical techniques that can aid in tasks such as the theoretical description of nuclear structures and the simulation of nuclear reactions. 
    more » « less
  2. Ergodic search enables optimal exploration of an information distribution with guaranteed asymptotic coverage of the search space. However, current methods typically have exponential computational complexity and are limited to Euclidean space. We introduce a computationally efficient ergodic search method. Our contributions are two-fold: First, we develop a kernel-based ergodic metric, generalizing it from Euclidean space to Lie groups. We prove this metric is consistent with the exact ergodic metric and ensures linear complexity. Second, we derive an iterative optimal control algorithm for trajectory optimization with the kernel metric. Numerical benchmarks show our method is two orders of magnitude faster than the state-of-the-art method. Finally, we demonstrate the proposed algorithm with a peg-in-hole insertion task. We formulate the problem as a coverage task in the space of SE(3) and use a 30-second-long human demonstration as the prior distribution for ergodic coverage. Ergodicity guarantees the asymptotic solution of the peg-in-hole problem so long as the solution resides within the prior information distribution, which is seen in the 100% success rate. 
    more » « less
  3. Abstract We introduce a family of variational quantum algorithms, which we coin as quantum iterative power algorithms (QIPAs), and demonstrate their capabilities as applied to global-optimization numerical experiments. Specifically, we demonstrate the QIPA based on a double exponential oracle as applied to ground state optimization of theH2molecule, search for the transmon qubit ground-state, and biprime factorization. Our results indicate that QIPA outperforms quantum imaginary time evolution (QITE) and requires a polynomial number of queries to reach convergence even with exponentially small overlap between an initial quantum state and the final desired quantum state, under some circumstances. We analytically show that there exists an exponential amplitude amplification at every step of the variational quantum algorithm, provided the initial wavefunction has non-vanishing probability with the desired state and that the unique maximum of the oracle is given by λ 1 > 0 , while all other values are given by the same value 0 < λ 2 < λ 1 (hereλcan be taken as eigenvalues of the problem Hamiltonian). The generality of the global-optimization method presented here invites further application to other problems that currently have not been explored with QITE-based near-term quantum computing algorithms. Such approaches could facilitate identification of reaction pathways and transition states in chemical physics, as well as optimization in a broad range of machine learning applications. The method also provides a general framework for adaptation of a class of classical optimization algorithms to quantum computers to further broaden the range of algorithms amenable to implementation on current noisy intermediate-scale quantum computers. 
    more » « less
  4. Similarity search is the basis for many data analytics techniques, including k-nearest neighbor classification and outlier detection. Similarity search over large data sets relies on i) a distance metric learned from input examples and ii) an index to speed up search based on the learned distance metric. In interactive systems, input to guide the learning of the distance metric may be provided over time. As this new input changes the learned distance metric, a naive approach would adopt the costly process of re-indexing all items after each metric change. In this paper, we propose the first solution, called OASIS, to instantaneously adapt the index to conform to a changing distance metric without this prohibitive re-indexing process. To achieve this, we prove that locality-sensitive hashing (LSH) provides an invariance property, meaning that an LSH index built on the original distance metric is equally effective at supporting similarity search using an updated distance metric as long as the transform matrix learned for the new distance metric satisfies certain properties. This observation allows OASIS to avoid recomputing the index from scratch in most cases. Further, for the rare cases when an adaption of the LSH index is shown to be necessary, we design an efficient incremental LSH update strategy that re-hashes only a small subset of the items in the index. In addition, we develop an efficient distance metric learning strategy that incrementally learns the new metric as inputs are received. Our experimental study using real world public datasets confirms the effectiveness of OASIS at improving the accuracy of various similarity search-based data analytics tasks by instantaneously adapting the distance metric and its associated index in tandem, while achieving an up to 3 orders of magnitude speedup over the state-of-art techniques. 
    more » « less
  5. The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions. 
    more » « less