We introduce a new statistical and variational approach to the phase estimation algorithm (PEA). Unlike the traditional and iterative PEAs which return only an eigenphase estimate, the proposed method can determine any unknown eigenstate–eigenphase pair from a given unitary matrix utilizing a simplified version of the hardware intended for the iterative PEA (IPEA). This is achieved by treating the probabilistic output of an IPEA-like circuit as an eigenstate–eigenphase proximity metric, using this metric to estimate the proximity of the input state and input phase to the nearest eigenstate–eigenphase pair and approaching this pair via a variational process on the input state and phase. This method may search over the entire computational space, or can efficiently search for eigenphases (eigenstates) within some specified range (directions), allowing those with some prior knowledge of their system to search for particular solutions. We show the simulation results of the method with the Qiskit package on the IBM Q platform and on a local computer.
more » « less- Award ID(s):
- 1839191
- PAR ID:
- 10303333
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 113027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Similarity search is the basis for many data analytics techniques, including k-nearest neighbor classification and outlier detection. Similarity search over large data sets relies on i) a distance metric learned from input examples and ii) an index to speed up search based on the learned distance metric. In interactive systems, input to guide the learning of the distance metric may be provided over time. As this new input changes the learned distance metric, a naive approach would adopt the costly process of re-indexing all items after each metric change. In this paper, we propose the first solution, called OASIS, to instantaneously adapt the index to conform to a changing distance metric without this prohibitive re-indexing process. To achieve this, we prove that locality-sensitive hashing (LSH) provides an invariance property, meaning that an LSH index built on the original distance metric is equally effective at supporting similarity search using an updated distance metric as long as the transform matrix learned for the new distance metric satisfies certain properties. This observation allows OASIS to avoid recomputing the index from scratch in most cases. Further, for the rare cases when an adaption of the LSH index is shown to be necessary, we design an efficient incremental LSH update strategy that re-hashes only a small subset of the items in the index. In addition, we develop an efficient distance metric learning strategy that incrementally learns the new metric as inputs are received. Our experimental study using real world public datasets confirms the effectiveness of OASIS at improving the accuracy of various similarity search-based data analytics tasks by instantaneously adapting the distance metric and its associated index in tandem, while achieving an up to 3 orders of magnitude speedup over the state-of-art techniques.more » « less
-
Telikepalli Kavitha ; Kurt Mehlhorn (Ed.)Over the last 50 years, there have been many data structures proposed to perform proximity search problems on metric data. Perhaps the simplest of these is the ball tree, which was independently discovered multiple times over the years. However, there is a lack of strong theoretical guarantees for standard ball trees, often leading to more complicated structures when guarantees are required. In this paper, we present the greedy tree, a simple ball tree construction for which we can prove strong theoretical guarantees for proximity search queries, matching the state of the art under reasonable assumptions. To our knowledge, this is the first ball tree construction providing such guarantees. Like a standard ball tree, it is a binary tree with the points stored in the leaves. Only a point, a radius, and an integer are stored for each node. The asymptotic running times of search algorithms in the greedy tree match those of more complicated structures regularly used in practice.more » « less
-
Abstract We introduce a family of variational quantum algorithms, which we coin as quantum iterative power algorithms (QIPAs), and demonstrate their capabilities as applied to global-optimization numerical experiments. Specifically, we demonstrate the QIPA based on a double exponential oracle as applied to ground state optimization of the
H 2molecule, search for the transmon qubit ground-state, and biprime factorization. Our results indicate that QIPA outperforms quantum imaginary time evolution (QITE) and requires a polynomial number of queries to reach convergence even with exponentially small overlap between an initial quantum state and the final desired quantum state, under some circumstances. We analytically show that there exists an exponential amplitude amplification at every step of the variational quantum algorithm, provided the initial wavefunction has non-vanishing probability with the desired state and that the unique maximum of the oracle is given by , while all other values are given by the same value (hereλ can be taken as eigenvalues of the problem Hamiltonian). The generality of the global-optimization method presented here invites further application to other problems that currently have not been explored with QITE-based near-term quantum computing algorithms. Such approaches could facilitate identification of reaction pathways and transition states in chemical physics, as well as optimization in a broad range of machine learning applications. The method also provides a general framework for adaptation of a class of classical optimization algorithms to quantum computers to further broaden the range of algorithms amenable to implementation on current noisy intermediate-scale quantum computers. -
The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions.more » « less
-
The unsupervised task of aligning two or more distributions in a shared latent space has many applications including fair representations, batch effect mitigation, and unsupervised domain adaptation. Existing flow-based approaches estimate multiple flows independently, which is equivalent to learning multiple full generative models. Other approaches require adversarial learning, which can be computationally expensive and challenging to optimize. Thus, we aim to jointly align multiple distributions while avoiding adversarial learning. Inspired by efficient alignment algorithms from optimal transport (OT) theory for univariate distributions, we develop a simple iterative method to build deep and expressive flows. Our method decouples each iteration into two subproblems: 1) form a variational approximation of a distribution divergence and 2) minimize this variational approximation via closed-form invertible alignment maps based on known OT results. Our empirical results give evidence that this iterative algorithm achieves competitive distribution alignment at low computational cost while being able to naturally handle more than two distributions.more » « less