skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge?
Abstract Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer’s P footprint was 4.4 kg P capita−1yr−1compared to 22.4 kg N capita−1yr−1for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management.  more » « less
Award ID(s):
1639458
PAR ID:
10303503
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 105022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increasing food and biofuel demands have led to the cascading effects from cropland expansions, raised fertilizer use, to increased riverine nitrogen (N) loads. However, little is known about the current trade-off between riverine N pollution and crop production due to the lack of predictive understanding of ecological processes across the land-aquatic continuum. Here, we propose a riverine N footprint (RNF) concept to quantify how N loads change along with per unit crop production gain. Using data synthesis and a well-calibrated hydro-ecological model, we find that the RNF within the Mississippi–Atchafalaya River Basin peaked at 1.95 g N kg−1grain during the 1990s, and then shifted from an increasing to a decreasing trend, reaching 0.65 g N kg−1grain in the 2010s. This implies decoupled responses of crop production and N loads to key agricultural activities approximately after 2000, but this pattern varies considerably among sub-basins. Our study highlights the importance of developing a food–energy–water nexus indicator to examine the region-specific trade-offs between crop production and land-to-aquatic N loads for achieving nutrient mitigation goals while sustaining economic gains. 
    more » « less
  2. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the U.S. Energy Information Administration (EIA), the U.S. Department of Transportation (USDOT), the U.S. Department of Energy (USDOE), and the U.S. Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the U.S. water footprint (F) and in the observed pattern of virtual water flows. The median water footprint (FCUMed) of the U.S. is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the U.S. is 589 m3 capita−1 (F'Withdrawal: 1298 m3 capita−1; F'CUMax: 720 m3 capita−1; F'CUMin: 198 m3 capita−1). The U.S. hydro-economic network is centered on cities and is dominated by the local and regional scales. Approximately (58 %) of U.S. water consumption is for the direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total U.S. water footprint, and is dominated by irrigated agriculture in the Western U.S. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 % to over 99 % depending on location. Harmonized region-specific, economic sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere. 
    more » « less
  3. Abstract Efficient management of nitrogen (N) and phosphorus (P) is imperative for sustainable agriculture, resource conservation, and reducing environmental pollution. Despite progress in on-farm practices and urban wastewater treatment in the Chesapeake Bay (CB) watershed, limited attention has been given to nutrient transport, use, and handling between farms and urban environments. This study uses the hierarchicalCAFE(Cropping system, Animal-crop system, Food system, and Ecosystem) framework to evaluate nutrient management performances within the watershed. We first develop a three-decade, county-level nutrient budget database (1985–2019), then analyze the spatiotemporal patterns of N and P budgets, as well as N and P use efficiencies, within the fourCAFEhierarchies. Our results indicate a sizable increase in potential N and P losses beyond crop fields (i.e. in the Animal-crop system, Food system, and Ecosystem), surpassing losses from cropland in over 90% of counties. To address these system-wide trade-offs, we estimate the nutrient resources in waste streams beyond croplands, which, if recovered and recycled, could theoretically offset mineral fertilizer inputs in over 60% of counties. Additionally, the growing imbalance in excess N versus P across systems, which increases the N:P ratio of potential losses, could pose an emerging risk to downstream aquatic ecosystems. By utilizing a systematic approach, our novel application of theCAFEframework reveals trade-offs and synergies in nutrient management outcomes that transcend agro-environmental and political boundaries, underscores disparities in N and P management, and helps to identify unique opportunities for enhancing holistic nutrient management across systems within the CB watershed. 
    more » « less
  4. Abstract Human‐induced nitrogen–phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data‐model integration framework to evaluate N and P dynamics and the potential for long‐term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security. 
    more » « less
  5. Diet shifts and food waste reduction have the potential to reduce the land and biodiversity footprint of the food system. In this study, we estimated the amount of land used to produce food consumed in the United States and the number of species threatened with extinction as a result of that land use. We predicted potential changes to the biodiversity threat under scenarios of food waste reduction and shifts to recommended healthy and sustainable diets. Domestically produced beef and dairy, which require vast land areas, and imported fruit, which has an intense impact on biodiversity per unit land, have especially high biodiversity footprints. Adopting the Planetary Health diet or the US Department of Agriculture (USDA)–recommended vegetarian diet nationwide would reduce the biodiversity footprint of food consumption. However, increases in the consumption of foods grown in global biodiversity hotspots both inside and outside the United States, especially fruits and vegetables, would partially offset the reduction. In contrast, the USDA-recommended US-style and Mediterranean-style diets would increase the biodiversity threat due to increased consumption of dairy and farmed fish. Simply halving food waste would benefit global biodiversity more than half as much as all Americans simultaneously shifting to a sustainable diet. Combining food waste reduction with the adoption of a sustainable diet could reduce the biodiversity footprint of US food consumption by roughly half. Species facing extinction because of unsustainable food consumption practices could be rescued by reducing agriculture's footprint; diet shifts and food waste reduction can help us get there. 
    more » « less