China increasingly relies on agricultural imports, driven by its rising population and income, as well as dietary shifts. International trade offers an opportunity to relieve pressures on resource depletion and pollution, such as nitrogen (N) pollution, while it poses multiple socioeconomic challenges, such as food availability. To quantify such trade-offs considering the roles of different crop types, we developed a unique crop-specific N budget database and assessed the impacts of the crop trade on multiple sustainability concerns including N pollution caused by crop production, crop land area, independence of food supply, and trade expenditures. We quantified the ‘virtual’ N inputs and harvested areas, which are the amount of N inputs and land resources used in exporting countries for China’s crop import. In addition, we proposed the concepts of ‘alternative’ N inputs and harvested area to quantify the resources needed if imported crops were produced in China. By comparing results from ‘alternative’ and ‘virtual’ concepts, we assessed the role of trade in Chinese crops over the past 30 years (i.e. 1986–2015) in alleviating N pollution and saving cropland in China and the world. Crop imports accounted for 31% of Chinese crop N consumption in 2015, and these crop imports eased the need for an additional cropland area of 62 million ha. It also avoided an N surplus by 56 and 36 Tg (Tg = 109kg) for China and the world respectively but led to $621 billion crop trade expenditures over the 30 year period. The N pollution damage avoided by crop imports in economic terms was priced at $22 ± 16 billion in 2015, which is lower than the crop trade expenditures but may be surpassed in the future with the development of the Chinese economy. Optimizing a crop trade portfolio can shift domestic production from N-intensive crop production (e.g. maize, fruits, and vegetables) to N-efficient crop production (e.g. soybeans), and consequently mitigate an N surplus by up to 12%. Improving N use efficiency for individual crops can further increase the mitigation potential of N surplus to 30%–50%, but requires technology advancement and policy incentives.
Increasing food and biofuel demands have led to the cascading effects from cropland expansions, raised fertilizer use, to increased riverine nitrogen (N) loads. However, little is known about the current trade-off between riverine N pollution and crop production due to the lack of predictive understanding of ecological processes across the land-aquatic continuum. Here, we propose a riverine N footprint (RNF) concept to quantify how N loads change along with per unit crop production gain. Using data synthesis and a well-calibrated hydro-ecological model, we find that the RNF within the Mississippi–Atchafalaya River Basin peaked at 1.95 g N kg−1grain during the 1990s, and then shifted from an increasing to a decreasing trend, reaching 0.65 g N kg−1grain in the 2010s. This implies decoupled responses of crop production and N loads to key agricultural activities approximately after 2000, but this pattern varies considerably among sub-basins. Our study highlights the importance of developing a food–energy–water nexus indicator to examine the region-specific trade-offs between crop production and land-to-aquatic N loads for achieving nutrient mitigation goals while sustaining economic gains.
more » « less- PAR ID:
- 10505293
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 18
- Issue:
- 11
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 114043
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
What would it look like? Visualizing a future US Corn Belt landscape with more table food production
Abstract Most farmland in the US Corn Belt is used to grow row crops at large scales (e.g., corn, soybean) that are highly processed before entering the human food stream rather than specialty crops grown in smaller areas and meant for direct human consumption (table food). Bolstering local table food production close to urban populations in this region through peri-urban agriculture (PUA) could enhance sustainability and resilience. Understanding factors influencing PUA producers' preferences and willingness to produce table food would enable supportive planning and policy efforts. This study combined land use visualization and survey data to examine the potential for increased local table food production for the US Corn Belt. We developed a spatial visualization of current agricultural land use and a future scenario with increased table food production designed to meet 50% of dietary requirements for a metropolitan population in 2050. A survey was administered to row crop (1360) and specialty crop (55) producers near Des Moines, Iowa, US to understand current and intended agricultural land use and factors influencing production. Responses from 316 row crop and 25 specialty crop producers were eligible for this analysis. A future scenario with increased table food production would require less than 3% of available agricultural land and some additional producers (approximately 130, primarily for grain production). Survey responses indicated PUA producers planned small increases in table food production in the next three to five years. Producer plans, including land rental for table food production, could provide approximately 25% of residents' fruit, vegetables, and grains, an increase from the baseline of 2%. Row crop producers ranked food safety regulations, and specialty producers ranked labor concerns as strong influences on their decision-making. Both groups indicated that crop insurance and processing facilities were also important. Increasing table food production by clustering mid-scale operations to increase economies of scale and strengthening supply chains and production infrastructure could provide new profitable opportunities for farmers and more resilient food systems for growing urban regions in the US Corn Belt. Continuing to address producer factors and landscape-scale environmental impacts will be critical in considering food system sustainability challenges holistically.
-
Abstract Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer’s P footprint was 4.4 kg P capita−1yr−1compared to 22.4 kg N capita−1yr−1for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management.
-
Abstract The intensification of agricultural systems in sub‐Saharan Africa (SSA) is necessary to reduce poverty and improve food security, but increased nutrient applications in smallholder systems could have negative consequences for water quality, greenhouse gas emissions, and air quality. We tracked nitrogen (N) inputs and measured maize (
Zea mays ) biomass, grain yields, N leaching, and nitric oxide (NO) and nitrous oxide fluxes from a clayey soil in Yala, Kenya and a sandy soil in Tumbi, Tanzania, with application rates of 0, 50, 75, 100, 150, and 200 kg N ha−1 yr−1over two cropping seasons. Maize yields were 4.5 times higher in Yala than Tumbi, but yields plateaued at both sites with fertilizer applications at or above 100 kg N ha−1 yr−1. Partial N budgets in Yala were typically negative, meaning more N was exported in maize biomass plus grain or lost from the system than was added in fertilizer. In Tumbi, N budgets were negative at lower fertilizer levels but positive at higher fertilizer levels. At both sites most (96%) of the N was lost through maize biomass/grain removal and N leaching. Fertilizer additions at or less than 50 kg N ha−1 yr−1on these two contrasting sites resulted in minor gaseous N losses, and fertilizer additions less than 200 kg N ha−1 yr−1caused relatively little change to N leaching losses. This indicates that the modest increases in fertilizer use required to improve maize yields will not greatly increase cropland N losses. -
Abstract Urban sustainability initiatives often encompass such goals as increasing local food production, closing nutrient loops through recycling organic waste, and reducing water pollution. However, there are potential tradeoffs among these desired outcomes that may constrain progress. For example, expansion of urban agriculture for food production may create hotspots of nutrient pollution if nutrient recycling is inefficient. We used gardener and urban farmer survey data from the Twin Cities Metropolitan Area (Minnesota, USA) to characterize phosphorus (P) and nitrogen (N) inputs and harvest in order to determine nutrient use efficiencies, and measured soil P concentrations at a subset of these sites to test whether excess soil P was common. All survey respondents (n = 142) reported using some form of soil amendment, with plant-based composts being the most common. Median application rates were 300 kg P/ha and 1400 kg N/ha. Median nutrient use efficiencies were low (2.5% for P, 5.0% for N) and there was only a weak positive relationship between P and N inputs and P and N harvested in crop biomass. Garden soils had a median Bray P value of 80 ppm, showing a buildup of plant-available P far exceeding recommended levels. Our results show that urban gardens are characterized by high nutrient inputs and inefficient conversion of these nutrients into crops, leading to buildup and potential loss of P and N from garden soils. Although urban gardens make up only 0.1% of land area in the Twin Cities, compost application to these urban gardens still constitutes one of the largest inputs of P to the watershed. In order to maximize desired outcomes from the expansion of urban agriculture (UA), it will be necessary to target soil amendments based on soil nutrient levels and crop nutrient demand.