skip to main content


Title: Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms
ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals.  more » « less
Award ID(s):
1453784
NSF-PAR ID:
10303649
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
219
Issue:
20
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.

     
    more » « less
  2. Abstract

    Reproduction involves considerable reorganization in an organism's physiology that incurs potential toxicity for cells (e.g., oxidative stress) and decrease in fitness. This framework has been the cornerstone of the so‐called ‘oxidative cost of reproduction’, a theory that remains controversial and relatively overlooked in non‐model ectotherms.

    Here, we used two complementary approaches in natural and controlled conditions to test whether altered access to climate conditions (water and temperature resources) alters oxidative status and mediates reproductive trade‐offs in viviparous populations of the common lizard (Zootoca vivipara).

    First, we examined whether access to free‐standing water and differences in ambient temperature across 12 natural populations could be related to variation in oxidative status, reproductive effort and reproductive success. Second, we determined whether an experimental restriction to water triggers higher oxidative cost of reproduction and correlates with fitness measures (reproductive success, future survival rate and probability of future reproduction).

    Pregnant females exhibited higher sensitivity than males to natural or experimental limitations in temperature and water access. That is, in restricted environments, pregnant females with higher reproductive effort exhibited stronger oxidative damage despite enhanced non‐enzymatic antioxidant capacity.

    Enhanced antioxidant defensive capacity in pregnant females was positively correlated with higher reproductive success, whereas elevated oxidative damage negatively correlated with offspring annual survival.

    Altogether, our results revealed a context‐dependent oxidative cost of reproduction that was concomitant with a conflict in water demand from offspring. These new insights should be critical for understanding ectotherm responses to heat waves and summer droughts that are increasing in frequency and duration.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell. The papers included in this special issue emerged from a symposium titled “Inside the Black Box: The Mitochondrial Basis of Life-history Variation and Animal Performance.” Based on studies of diverse animal taxa, three distinct themes emerged from these papers. (1) When linking mitochondrial function to components of fitness, it is crucial that mitochondrial assays are performed in conditions as close as the intracellular conditions experienced by the mitochondria in vivo. (2) Functional plasticity allows mitochondria to retain their performance, as well as that of their host, over a range of exogenous conditions, and selection on mitochondrial and nuclear-derived proteins can optimize the match between the environment and the bioenergetic capacity of the mitochondrion. Finally, (3) studies of wild and wild-derived animals suggest that mitochondria play a central role in animal performance and life history strategy. Taken as a whole, we hope that these papers will foster discussion and inspire new hypotheses and innovations that will further our understanding of the mitochondrial processes that underlie variation in life history traits and animal performance. 
    more » « less
  4. Abstract

    Under life‐history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex‐specific ageing in the context of a given mating system.

    Nazca boobies (Sula granti; a seabird) practise serial monogamy and biparental care. A male‐biased population sex ratio results in earlier and more frequent breeding by females. Based on sex‐specific reproductive schedules, females were expected to show faster age‐related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late‐life performance and accelerate senescence.

    Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early‐/late‐life fitness trade‐offs within each sex. Within‐sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort‐level differences in early‐adult environments.

    Females showed marginally more intense actuarial senescence and stronger age‐related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late‐life reproductive performance in both sexes and thus did not support a causal link between early‐reproduction/late‐life fitness trade‐offs and sex differences in ageing. A high‐quality diet in early adulthood reduced late‐life survival (females) and accelerated senescence for fledging success (males).

    This study documents clear variation in ageing patterns—by sex, early‐adult environment and early‐adult reproductive effort—with implications for the role mating systems and early‐life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age‐ and condition‐dependent mate choice interacting with this population's male‐biased sex ratio and mate rotation.

     
    more » « less
  5. Abstract

    Extreme climatic events may influence individual‐level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations.

    We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life‐history trait variances.

    To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life‐history strategy due to trade‐offs between survival and reproduction.

    Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane (; 95% CI: 1.488, 1.538), relative to ordinary years .

    Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.

     
    more » « less