skip to main content

Title: Greenhouse gas balance in global pasturelands and rangelands

Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Article No. 104006
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere. In the framework of the second phase of the REgional Carbon Cycle Assessment and Processes (RECCAP‐2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9–20.1) and 8.3 (5.7–12.7) Pg CO2‐eq. yr−1at a 20 and 100 years horizon (GWP20and GWP100), respectively. Contributions of CO2dominate GWP100, with rivers being the largest emitter. For GWP20, lakes and rivers are equally important emitters, and the warming potential of CH4is more important than that of CO2. Contributions from N2O are about two orders of magnitude lower. Normalized to the area of RECCAP‐2 regions, S‐America and SE‐Asia show the highest emission rates, dominated by riverine CO2emissions.

    more » « less
  2. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

    more » « less
  3. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

    more » « less
  4. Abstract The BlueFlux field campaign, supported by NASA’s Carbon Monitoring System, will develop prototype blue carbon products to inform coastal carbon management. While blue carbon has been suggested as a nature-based climate solution (NBS) to remove carbon dioxide (CO 2 ) from the atmosphere, these ecosystems also release additional greenhouse gases (GHGs) such as methane (CH 4 ) and are sensitive to disturbances including hurricanes and sea-level rise. To understand blue carbon as an NBS, BlueFlux is conducting multi-scale measurements of CO 2 and CH 4 fluxes across coastal landscapes, combined with long-term carbon burial, in Southern Florida using chambers, flux towers, and aircraft combined with remote-sensing observations for regional upscaling. During the first deployment in April 2022, CO 2 uptake and CH 4 emissions across the Everglades National Park averaged −4.9 ± 4.7 μ mol CO 2 m −2 s −1 and 19.8 ± 41.1 nmol CH 4 m −2 s −1 , respectively. When scaled to the region, mangrove CH 4 emissions offset the mangrove CO 2 uptake by about 5% (assuming a 100 year CH 4 global warming potential of 28), leading to total net uptake of 31.8 Tg CO 2 -eq y −1 . Subsequent field campaigns will measure diurnal and seasonal changes in emissions and integrate measurements of long-term carbon burial to develop comprehensive annual and long-term GHG budgets to inform blue carbon as a climate solution. 
    more » « less
  5. Abstract

    Soil is the largest terrestrial carbon (C) reservoir and a large potential source or sink of atmospheric CO. Soil C models have usually focused on refining representations of microbe‐mediated C turnover, whereas lateral hydrologic C fluxes have largely been ignored at regional and global scales. Here, we provide large‐scale estimates of hydrologic export of soil organic carbon (SOC) and its effects on bulk soil C turnover rates. Hydrologic export of SOC ranged from nearly 0 to 12 g C m−2yr−1amongst catchments across the conterminous United States, and total export across this region was 14 (95% CI 4‐41) Tg C/yr. The proportion of soil C turnover attributed to hydrologic export ranged from <1% to 20%, and averaged 0.97% (weighted by catchment area; 95% CI 0.3%–2.6%), with the lowest values in arid catchments. Ignoring hydrologic export in C cycle models might lead to overestimation of SOC stocks by 0.3–2.6 Pg C for the conterminous United States. High uncertainty in hydrologic C export fluxes and potentially substantial effects on soil C turnover illustrate the need for research aimed at improving our mechanistic understanding of the processes regulating hydrologic C export.

    more » « less