skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nuclear star clusters
Abstract We review the current knowledge about nuclear star clusters (NSCs), the spectacularly dense and massive assemblies of stars found at the centers of most galaxies. Recent observational and theoretical works suggest that many NSC properties, including their masses, densities, and stellar populations, vary with the properties of their host galaxies. Understanding the formation, growth, and ultimate fate of NSCs, therefore, is crucial for a complete picture of galaxy evolution. Throughout the review, we attempt to combine and distill the available evidence into a coherent picture of NSC evolution. Combined, this evidence points to a clear transition mass in galaxies of $$\sim 10^9\,M_\odot$$ ∼ 10 9 M ⊙ where the characteristics of nuclear star clusters change. We argue that at lower masses, NSCs are formed primarily from globular clusters that inspiral into the center of the galaxy, while at higher masses, star formation within the nucleus forms the bulk of the NSC. We also discuss the co-existence of NSCs and central black holes, and how their growth may be linked. The extreme densities of NSCs and their interaction with massive black holes lead to a wide range of unique phenomena including tidal disruption and gravitational-wave events. Finally, we review the evidence that many NSCs end up in the halos of massive galaxies stripped of the stars that surrounded them, thus providing valuable tracers of the galaxies’ accretion histories.  more » « less
Award ID(s):
1813609
PAR ID:
10303703
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astronomy and Astrophysics Review
Volume:
28
Issue:
1
ISSN:
0935-4956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use high-resolution Hubble Space Telescope imaging data of dwarf galaxies in the Local Volume ($$\lesssim {11}\, \mathrm{Mpc}$$) to parameterize 19 newly discovered nuclear star clusters (NSCs). Most of the clusters have stellar masses of $$M_{\star }^{\mathrm{nsc}} \lesssim 10^{6}{\, {\rm M}_{\odot }}$$ and compare to Galactic globular clusters in terms of ellipticity, effective radius, stellar mass, and surface density. The clusters are modelled with a Sérsic profile and their surface brightness evaluated at the effective radius reveals a tight positive correlation to the host galaxy stellar mass. Our data also indicate an increase in slope of the density profiles with increasing mass, perhaps indicating an increasing role for in situ star formation in more massive hosts. We evaluate the scaling relation between the clusters and their host galaxy stellar mass to find an environmental dependence: for NSCs in field galaxies, the slope of the relation is $$\alpha = 0.82^{+0.08}_{-0.08}$$ whereas $$\alpha = 0.55^{+0.06}_{-0.05}$$ for dwarfs in the core of the Virgo cluster. Restricting the fit for the cluster to $$M_{\star }^{\mathrm{gal}} \ge 10^{6.5}{\, {\rm M}_{\odot }}$$ yields $$\alpha = 0.70^{+0.08}_{-0.07}$$, in agreement with the field environment within the 1σ interval. The environmental dependence is due to the lowest-mass nucleated galaxies and we speculate that this is either due to an increased number of progenitor globular clusters merging to become an NSC, or due to the formation of more massive globular clusters in dense environments, depending on the initial globular cluster mass function. Our results clearly corroborate recent results in that there exists a tight connection between NSCs and globular clusters in dwarf galaxies. 
    more » « less
  2. Abstract Effectively finding and identifying active galactic nuclei (AGNs) in dwarf galaxies is an important step in studying black hole formation and evolution. In this work, we examine four mid-infrared (IR)-selected AGN candidates in dwarf galaxies with stellar masses betweenM ~ 108and 109Mand find that the galaxies are host to nuclear star clusters (NSCs) that are notably rare in how young and massive they are. We perform photometric measurements on the central star clusters in our target galaxies using Hubble Space Telescope optical and near-IR imaging and compare their observed properties to models of stellar population evolution. We find that these galaxies are host to very massive (~107M), extremely young (≲8 Myr), and dusty (0.6 ≲ Av ≲ 1.8) NSCs. Our results indicate that these galactic nuclei have ongoing star formation, are still at least partially obscured by clouds of gas and dust, and are most likely producing the extremely red AGN-like mid-IR colors. Moreover, prior work has shown that these galaxies do not exhibit X-ray or optical AGN signatures. Therefore, we recommend caution when using mid-IR color–color diagnostics for AGN selection in dwarf galaxies, since, as directly exemplified in this sample, they can be contaminated by massive star clusters with ongoing star formation. 
    more » « less
  3. null (Ed.)
    The existence of ∼10 9 M ⊙ supermassive black holes (SMBHs) within the first billion years of the Universe has stimulated numerous ideas for the prompt formation and rapid growth of black holes (BHs) in the early Universe. Here, we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as ∼10 9 M ⊙ , and how multimessenger observations could distinguish between different SMBH assembly scenarios. We conclude the following: ▪  The ultrarare ∼10 9 M ⊙ SMBHs represent only the tip of the iceberg. Early BHs likely fill a continuum from the stellar-mass (∼10M ⊙ ) to the supermassive (∼10 9 ) regimes, reflecting a range of initial masses and growth histories. ▪  Stellar-mass BHs were likely left behind by the first generation of stars at redshifts as high as ∼30, but their initial growth typically was stunted due to the shallow potential wells of their host galaxies. ▪  Conditions in some larger, metal-poor galaxies soon became conducive to the rapid formation and growth of massive seed holes, via gas accretion and by mergers in dense stellar clusters. ▪  BH masses depend on the environment (such as the number and properties of nearby radiation sources and the local baryonic streaming velocity) and on the metal enrichment and assembly history of the host galaxy. ▪  Distinguishing between assembly mechanisms will be difficult, but a combination of observations by the Laser Interferometer Space Antenna (probing massive BH growth via mergers) and by deep multiwavelength electromagnetic observations (probing growth via gas accretion) is particularly promising. 
    more » « less
  4. Abstract The volumetric rate of tidal disruption events (TDEs) encodes information on the still-unknown demographics of central massive black holes (MBHs) in low-mass galaxies (≲109M). Theoretical TDE rates from model galaxy samples can extract this information, but this requires accurately defining the nuclear stellar density structures. This region is typically dominated by nuclear star clusters (NSCs), which have been shown to increase TDE rates by orders of magnitude. Thus, we assemble the largest available sample of parsec-scale 3D density profiles that include NSC components. We deproject the point-spread-function-deconvolved surface-brightness profiles of 91 nearby galaxies of varying morphology and combine these with nuclear mass-to-light ratios estimated from measured colors or spectral synthesis to create 3D mass density profiles. We fit the inner 3D density profile to find the best-fit power-law density profile in each galaxy. We compile this information as a function of galaxy stellar mass to fit new empirical density scaling relations. These fits reveal positive correlations between galaxy stellar mass and central stellar density in both early- and late-type galaxies. We find that early-type galaxies have somewhat higher densities and shallower profiles relative to late-type galaxies at the same mass. We also use the density profiles to estimate the influence radius of each galaxy’s MBH and find that the sphere of influence was likely resolved in most cases. These new relations will be used in future works to build mock galaxy samples for dynamical TDE rate calculations, with the aim of constraining MBH demographics in low-mass galaxies. 
    more » « less
  5. ABSTRACT We present a novel, few-body computational framework designed to shed light on the likelihood of forming intermediate-mass (IM) and supermassive (SM) black holes (BHs) in nuclear star clusters (NSCs) through successive BH mergers, initiated with a single BH seed. Using observationally motivated NSC profiles, we find that the probability of an $${\sim }100\hbox{-}\mathrm{M}_\odot$$ BH to grow beyond $${\sim }1000 \, \mathrm{M}_\odot$$ through successive mergers ranges from $${\sim }0.1~{{\ \rm per\ cent}}$$ in low-density, low-mass clusters to nearly 90  per cent in high-mass, high-density clusters. However, in the most massive NSCs, the growth time-scale can be very long ($$\gtrsim 1\,$$ Gyr); vice versa, while growth is least likely in less massive NSCs, it is faster there, requiring as little as $${\sim }0.1\,$$Gyr. The increased gravitational focusing in systems with lower velocity dispersions is the primary contributor to this behaviour. We find that there is a simple ‘7-strikes-and-you’re-in’ rule governing the growth of BHs: Our results suggest that if the seed survives 7–10 successive mergers without being ejected (primarily through gravitational wave recoil kicks), the growing BH will most likely remain in the cluster and will then undergo runaway, continuous growth all the way to the formation of an SMBH (under the simplifying assumption adopted here of a fixed background NSC). Furthermore, we find that rapid mergers enforce a dynamically mediated ‘mass gap’ between about $${50\!-\!300 \, \mathrm{M}_\odot }$$ in an NSC. 
    more » « less