skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growing black holes through successive mergers in galactic nuclei – I. Methods and first results
ABSTRACT We present a novel, few-body computational framework designed to shed light on the likelihood of forming intermediate-mass (IM) and supermassive (SM) black holes (BHs) in nuclear star clusters (NSCs) through successive BH mergers, initiated with a single BH seed. Using observationally motivated NSC profiles, we find that the probability of an $${\sim }100\hbox{-}\mathrm{M}_\odot$$ BH to grow beyond $${\sim }1000 \, \mathrm{M}_\odot$$ through successive mergers ranges from $${\sim }0.1~{{\ \rm per\ cent}}$$ in low-density, low-mass clusters to nearly 90  per cent in high-mass, high-density clusters. However, in the most massive NSCs, the growth time-scale can be very long ($$\gtrsim 1\,$$ Gyr); vice versa, while growth is least likely in less massive NSCs, it is faster there, requiring as little as $${\sim }0.1\,$$Gyr. The increased gravitational focusing in systems with lower velocity dispersions is the primary contributor to this behaviour. We find that there is a simple ‘7-strikes-and-you’re-in’ rule governing the growth of BHs: Our results suggest that if the seed survives 7–10 successive mergers without being ejected (primarily through gravitational wave recoil kicks), the growing BH will most likely remain in the cluster and will then undergo runaway, continuous growth all the way to the formation of an SMBH (under the simplifying assumption adopted here of a fixed background NSC). Furthermore, we find that rapid mergers enforce a dynamically mediated ‘mass gap’ between about $${50\!-\!300 \, \mathrm{M}_\odot }$$ in an NSC.  more » « less
Award ID(s):
2108624
PAR ID:
10423801
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4227-4250
Size(s):
p. 4227-4250
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The origin of the ‘seeds’ of supermassive black holes (BHs) continues to be a puzzle, as it is currently unclear if the imprints of early seed formation could survive to today. We examine the signatures of seeding in the local Universe using five $$[18~\mathrm{Mpc}]^3$$BRAHMA simulation boxes run to $z=0$. They initialize $$1.5\times 10^5~\rm {M}_{\odot }$$ BHs using different seeding models. The first four boxes initialize BHs as heavy seeds using criteria that depend on dense and metal-poor gas, Lyman–Werner radiation, gas spin, and environmental richness. The fifth box initializes BHs as descendants of lower mass seeds ($$\sim 10^3~\rm {M}_{\odot }$$) using a new stochastic seed model built in our previous work. In our simulations, we find that the abundances and properties of $$\sim 10^5-10^6~\rm {M}_{\odot }$$ local BHs hosted in $$M_*\lesssim 10^{9}~\rm {M}_{\odot }$$ dwarf galaxies, are sensitive to the assumed seeding criteria. This is for two reasons: (1) there is a substantial population of local $$\sim 10^5~\rm {M}_{\odot }$$ BHs that are ungrown relics of early seeds from $$z\sim 5-10$$; (2) BH growth up to $$\sim 10^6~\rm {M}_{\odot }$$ is dominated by mergers in our simulations all the way down to $$z\sim 0$$. As the contribution from gas accretion increases, the signatures of seeding start to weaken in more massive $$\gtrsim 10^6~\rm {M}_{\odot }$$ BHs, and they are erased for $$\gtrsim 10^7~\rm {M}_{\odot }$$ BHs. The different seed models explored here predict abundances of local $$\sim 10^6~\rm {M}_{\odot }$$ BHs ranging from $$\sim 0.01-0.05~\mathrm{Mpc}^{-3}$$ with occupation fractions of $$\sim 20-100~{{\ \rm per\ cent}}$$ for $$M_*\sim 10^{9}~\rm {M}_{\odot }$$ galaxies. These results highlight the potential for placing constraints on seeding models using local $$\sim 10^5-10^6~\rm {M}_{\odot }$$ BHs hosted in dwarf galaxies. Since merger dynamics and accretion physics impact the persistence of seeding signatures, and both high and low mass seed models can produce similar local BH populations, disentangling their roles will require combining high and low redshift constraints. 
    more » « less
  2. ABSTRACT A major open question in astrophysics is the mechanisms by which massive black holes (BHs) form in the early Universe, which pose constraints on seeding models. We study BH formation and evolution in a flexible model combining the cosmological IllustrisTNG (TNG) simulations with semi-analytic modelling in post-processing. We identify our TNG model hosts based on various criteria including a minimum gas mass of $10^7$$–$$10^9$${\rm M}_{\odot }$$, total host mass of $$10^{8.5}$$–$$10^{10.5}$${\rm M}_{\odot }$$, and a maximum gas metallicity of 0.01–0.1 $$\mathrm{Z}_{\odot }$$. Each potential host is assigned a BH seed with a probability of 0.01–1. The populations follow the TNG galaxy merger tree. This approach improves upon the predictive power of the simple TNG BH seeding prescription, narrowing down plausible seeding parameter spaces, and it is readily adaptable to other cosmological simulations. Several model realizations predict $$z\lesssim 4$$ BH mass densities that are consistent with empirical data as well as the TNG BHs. However, high-redshift BH number densities can differ by factors of $$\sim$$ 10 to $$\gtrsim$$ 100 between seeding parameters. In most model realizations, $$\lesssim 10^5$${\rm M}_{\odot }$$ BHs substantially outnumber heavier BHs at high redshifts. Mergers between such BHs are prime targets for gravitational-wave detection with Laser Interferometer Space Antenna. The $z=0$ BH mass densities in most realizations of the model agree well with observations, but our strictest seeding criteria fail at high redshift. Our findings strongly motivate the need for better empirical constraints on high-z BHs, and they underscore the significance of recent active galactic nucleus discoveries with JWST. 
    more » « less
  3. ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models. 
    more » « less
  4. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  5. ABSTRACT Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $$M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $$8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$$ seeds are formed. While lower mass ($$1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $$\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($$\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities. 
    more » « less