skip to main content


Title: Low-Overhead Distributed MAC for Serving Dynamic Users over Multiple Channels
With the adoption of 5G wireless technology and the Internet-of-Things (IoT) networking, there is a growing interest in serving a dense population of low-complexity devices over shared wireless uplink channels. Different from the traditional scenario of persistent users, in these new networks each user is expected to generate only small bundles of information intermittently. The highly dynamic nature of such demand and the typically low-complexity nature of the user devices calls for a new MAC paradigm that is geared for low-overhead and distributed operation of dynamic users.In this work, we address this need by developing a generic MAC mechanism for estimating the number and coordinating the activation of dynamic users for efficient utilization of the time-frequency resources with minimal public feedback from the common receiver. We fully characterize the throughput and delay performance of our design under a basic threshold-based multi-channel capacity condition, which allows for the use of different channel utilization schemes. Moreover, we consider the Successive-Interference-Cancellation (SIC) Multi-Channel MAC scheme as a specific choice in order to demonstrate the performance of our design for a spectrally-efficient (albeit idealized) scheme. Under the SIC encoding/decoding scheme, we prove that our low-overhead distributed MAC can support maximum throughput, which establishes the efficiency of our design. Under SIC, we also demonstrate how the basic threshold-based success model can be relaxed to be adapted to the performance of a non-ideal success model.  more » « less
Award ID(s):
1824418 1717045 1824337 2106679 2007231
PAR ID:
10303720
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. 19th internatinoal symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Future generation wireless technologies are expected to serve an increasingly dense and dynamic population of users that generate short bundles of information to be transferred over the shared spectrum. This calls for new distributed and low-overhead Multiple-Access-Control (MAC) strategies to serve such dynamic demands with spectral efficiency characteristics. In this work, we address this need by identifying and developing two fundamentally different MAC paradigms: (i) congestion-based paradigm that estimates the congestion level in the system and adapts to it; and (ii) age-based paradigm that prioritizes demands based on their ages. Despite their apparent differences, we develop policies under each paradigm in a generic multi-channel access scenario that are provably throughput-optimal when they employ any asymptotically-efficient channel encoding/decoding mechanism. We also characterize the stability regions of the two designs, and investigate the conditions under which one design outperforms the other. We perform extensive simulations to validate the theoretical claims and investigate the non-asymptotic performances of our designs. 
    more » « less
  2. Current wireless networks employ sophisticated multi-user transmission techniques to fully utilize the physical layer resources for data transmission. At the MAC layer, these techniques rely on a semi-static map that translates the channel quality of users to the potential transmission rate (more precisely, a map from the Channel Quality Index to the Modulation and Coding Scheme) for user selection and scheduling decisions. However, such a static map does not adapt to the actual deployment scenario and can lead to large performance losses. Furthermore, adaptively learning this map can be inefficient, particularly when there are a large number of users. In this work, we make this learning efficient by clustering users. Specifically, we develop an online learning approach that jointly clusters users and channel-states, and learns the associated rate regions of each cluster. This approach generates a scenario-specific map that replaces the static map that is currently used in practice. Furthermore, we show that our learning algorithm achieves sub- linear regret when compared to an omniscient genie. Next, we develop a user selection algorithm for multi-user scheduling using the learned user-clusters and associated rate regions. Our algorithms are validated on the WiNGS simulator from AT&T Labs, that implements the PHY/MAC stack and simulates the channel. We show that our algorithm can efficiently learn user clusters and the rate regions associated with the user sets for any observed channel state. Moreover, our simulations show that a deployment-scenario-specific map significantly outperforms the current static map approach for resource allocation at the MAC layer. 
    more » « less
  3. ABSTRACT Multi-user transmission at 60 GHz promises to increase the throughput of next generation WLANs via both analog and digital beamforming. To maximize capacity, analog beams need to be jointly configured with user selection and digital weights; however, joint maximization requires prohibitively large training and feedback overhead. In this paper, we scale multi-user 60 GHz WLAN throughput via design of a low-complexity structure for decoupling beam steering and user selection such that analog beam training precedes user selection. We introduce a two-class framework comprising (i) single shot selection of users by minimizing overlap of their idealized beam patterns obtained from analog training and (ii) interference-aware incremental addition of users via sequential training to better predict inter-user interference. We implement a programmable testbed using software defined radios and commercial 60 GHz transceivers and conduct over-the-air measurements to collect channel traces for different indoor WLAN deployments. Using trace based emulations and high resolution 60 GHz channel models, we show that our decoupling structure experiences less than 5% performance loss compared to maximum achievable rates via joint user-beam selection. 
    more » « less
  4. With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results. 
    more » « less
  5. Massive multiple-input multiple-output (MIMO) enjoys great advantage in 5G wireless communication systems owing to its spectrum and energy efficiency. However, hundreds of antennas require large volumes of pilot overhead to guarantee reliable channel estimation in FDD massive MIMO system. Compressive sensing (CS) has been applied for channel estimation by exploiting the inherent sparse structure of massive MIMO channel but suffer from high complexity. To overcome this challenge, this paper develops a hybrid channel estimation scheme by integrating the model-driven CS and data-driven deep unrolling technique. The proposed scheme consists of a coarse estimation part and a fine correction part to respectively exploit the inter- and intraframe sparsities of channels to greatly reduce the pilot overhead. Theoretical result is provided to indicate the convergence of the fine correction and coarse estimation net. Simulation results are provided to verify that our scheme can estimate MIMO channels with low pilot overhead while guaranteeing estimation accuracy with relatively low complexity. 
    more » « less