skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances and Open Problems in Backscatter Networking
Despite significant research in backscatter communication over the past decade, key technical open problems remain underexplored. Here, we first systematically lay out the design space for backscatter networking and identify applications that make backscatter an attractive communication primitive. We then identify 10 research problems that remain to be solved in backscatter networking. These open problems span across the network stack to include circuits, embedded systems, physical layer, MAC and network protocols as well as applications. We believe that addressing these problems can help deliver on backscatter's promise of low-power ubiquitous connectivity.  more » « less
Award ID(s):
1823148
PAR ID:
10303860
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
GetMobile: Mobile Computing and Communications
Volume:
24
Issue:
4
ISSN:
2375-0529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Underwater backscatter is a recent networking technology that enables net-zero-power communication and sensing in underwater environments. Existing research on underwater backscatter has focused on designing and demonstrating early systems with impressive capabilities; however, what remains critically missing is an end-to-end analysis of the underwater backscatter communication channel, which is necessary to understand the potential of this technology to scale to real-world applications and practical deployments. This paper presents the first comprehensive theoretical and empirical analysis of the underwater backscatter channel, including the downlink and uplink of end-to-end backscatter. We introduce a closed-form analytical model that encompasses the physical properties of piezoelectric materials, electromechanical coupling, electrical impedance, and the underwater acoustic channel. We verify the correctness of this theoretical analysis through both finite-element-model physical simulations and real-world experimental validation in a river, demonstrating that the analytical model matches our real-world experiments with a median deviation of only 0.76 dB. Using this model, we then simulate the theoretical limits of underwater backscatter as a function of different design parameters and identify pathways for pushing underwater backscatter toward its theoretical limits. 
    more » « less
  2. We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation in stationary setups demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power. By realizing hundreds of meters of range in underwater backscatter, this paper presents the first practical system capable of coastal monitoring applications. Finally, our evaluation represents the first experimental validation of underwater backscatter in the ocean. 
    more » « less
  3. null (Ed.)
    Many promising networking research ideas in programmable networks never see the light of day. Yet, deploying research prototypes in production networks can help validate research ideas, improve them with faster feedback, uncover new research questions, and also ease the subsequent transition to practice. In this paper, we show how researchers can run and validate their research ideas in their own backyards---on their production campus networks---and we have seen that such a demonstrator can expedite the deployment of a research idea in practice to solve real network operation problems. We present P4Campus , a proof-of-concept that encompasses tools, an infrastructure design, strategies, and best practices---both technical and non-technical---that can help researchers run experiments against their programmable network idea in their own network. We use network tapping devices, packet brokers, and commodity programmable switches to enable running experiments to evaluate research ideas on a production campus network. We present several compelling data-plane applications as use cases that run on our campus and solve production network problems. By sharing our experiences and open-sourcing our P4 apps [28], we hope to encourage similar efforts on other campuses. 
    more » « less
  4. null (Ed.)
    Many promising networking research ideas in programmable networks never see the light of day. Yet, deploying research prototypes in production networks can help validate research ideas, improve them with faster feedback, uncover new research questions, and also ease the subsequent transition to practice. In this paper, we show how researchers can run and validate their research ideas in their own backyards—on their production campus networks—and we have seen that such a demonstrator can expedite the deployment of a research idea in practice to solve real network operation problems. We present P4Campus, a proof-of-concept that encompasses tools, an infrastructure design, strategies, and best practices—–both technical and non-technical–—that can help researchers run experiments against their programmable network idea in their own network. We use network tapping devices, packet brokers, and commodity programmable switches to enable running experiments to evaluate research ideas on a production campus network. We present several compelling data-plane applications as use cases that run on our campus and solve production network problems. By sharing our experiences and open-sourcing our P4 apps [28], we hope to encourage similar efforts on other campuses. 
    more » « less
  5. Named-Data Networking (NDN), a realization of the Information-Centric Networking (ICN) vision, offers a request-response communication model where data is identified based on application-defined names at the network layer. This amplifies the ability of censoring authorities to restrict access to certain data/websites/applications and monitor user requests. The majority of existing NDN-based frameworks have focused on enabling users in a censoring network to access data available outside of this network, without considering how data producers in a censoring network can make their data available to users outside of this network. This problem becomes especially challenging, since the NDN communication paths are symmetric, while producers are mandated to sign the data they generate and identify their certificates. In this paper, we propose Harpocrates, an NDN-based framework for anonymous data publication under censorship conditions. Harpocrates enables producers in censoring networks to produce and make their data available to users outside of these networks while remaining anonymous to censoring authorities. Our evaluation demonstrates that Harpocrates achieves anonymous data publication under different settings, being able to identify and adapt to censoring actions. 
    more » « less