skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Battery-Free Camera Occupancy Detection System
Occupancy detection systems are commonly equipped with high quality cameras and a processor with high computational power to run detection algorithms. This paper presents a human occupancy detection system that uses battery-free cameras and a deep learning model implemented on a low-cost hub to detect human presence. Our low-resolution camera harvests energy from ambient light and transmits data to the hub using backscatter communication. We implement the state-of-the-art YOLOv5 network detection algorithm that offers high detection accuracy and fast inferencing speed on a Raspberry Pi 4 Model B. We achieve an inferencing speed of ∼100ms per image and an overall detection accuracy of >90% with only 2GB CPU RAM on the Raspberry Pi. In the experimental results, we also demonstrate that the detection is robust to noise, illuminance, occlusion, and angle of depression.  more » « less
Award ID(s):
1823148
PAR ID:
10303866
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Date Published:
Journal Name:
EMDL 2021: 5th International Workshop on Embedded and Mobile Deep Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores the problem of deploying machine learning (ML)-based object detection and segmentation models on edge platforms to enable realtime caveline detection for Autonomous Underwater Vehicles (AUVs) used for under-water cave exploration and mapping. We specifically investigate three ML models, i.e., U-Net, Vision Transformer (ViT), and YOLOv8, deployed on three edge platforms: Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), and NVIDIA Jetson Nano. The experimental results unveil clear tradeoffs between model accuracy, processing speed, and energy consumption. The most accurate model has shown to be U-Net with an 85.53 F1-score and 85.38 Intersection Over Union (IoU) value. Meanwhile, the highest inference speed and lowest energy consumption are achieved by the YOLOv8 model deployed on Jetson Nano operating in the high-power and low-power modes, respectively. The comprehensive quantitative analyses and comparative results provided in the paper highlight important nuances that can guide the deployment of caveline detection systems on underwater robots for ensuring safe and reliable AUV navigation during underwater cave exploration and mapping missions. 
    more » « less
  2. We present a microenvironment of multiple cameras to capture multi-viewpoint time-lapse videos of objects showing spatiotemporal phenomena such as aging. Our microenvironment consists of four synchronized Raspberry Pi v2 cameras triggered by four corresponding Raspberry Pi v3 computers that are controlled by a central computer. We provide a graphical user interface for users to trigger captures and visualize multiple viewpoint videos. We show multiple viewpoint captures for objects such as fruit that depict shape changes due to water volume loss and appearance changes due to enzymatic browning. 
    more » « less
  3. In recent years, robotic technologies, e.g. drones or autonomous cars have been applied to the agricultural sectors to improve the efficiency of typical agricultural operations. Some agricultural tasks that are ideal for robotic automation are yield estimation and robotic harvesting. For these applications, an accurate and reliable image-based detection system is critically important. In this work, we present a low-cost strawberry detection system based on convolutional neural networks. Ablation studies are presented to validate the choice of hyper- parameters, framework, and network structure. Additional modifications to both the training data and network structure that improve precision and execution speed, e.g., input compression, image tiling, color masking, and network compression, are discussed. Finally, we present a final network implementation on a Raspberry Pi 3B that demonstrates a detection speed of 1.63 frames per second and an average precision of 0.842. 
    more » « less
  4. We have developed a sensing system that utilizes a low-cost computer (Raspberry Pi) and its imaging camera as an optical sensing core for the continuous detection of NO2in the air (PiSENS-A). 
    more » « less
  5. We present the design of a multiuser networked wireless system to remotely configure and control the lighting of multiple webcam users at different locations. This system makes use of a Raspberry Pi and a wireless DMX transmitter as the wireless interface that can be used to control the DMX webcam lights. A lighting control software called OLA is used on the Raspberry Pi. A web interface is designed to issue commands to OLA API running on the Raspberry Pi to control DMX lights associated with Raspberry Pi. Multiple wireless interfaces, each for a specific user at a different location, can be simultaneously configured and managed using the web interface. The interactive web interface can be used to control the intensity and color of the DMX lights. The web interface follows a model controller view design and makes HTTP calls to the OLA software running on Raspberry pi. The proposed system enables an operator to provide optimum and artistic lighting effects for a group of online presenters. 
    more » « less