Abstract. Zooplankton diel vertical migration (DVM) is critical to ocean ecosystem dynamics and biogeochemical cycles, by supplying food and injecting carbon to the mesopelagic ocean (200–800 m). The deeper the zooplankton migrate, the longer the carbon is sequestered away from the atmosphere and the deeper the ecosystems they feed. Sparse observations show variations in migration depths over a wide range of temporal and spatial scales. A major challenge, however, is to understand the biological and physical mechanisms controlling this variability, which is critical to assess impacts on ecosystem and carbon dynamics. Here, we introduce a migrating zooplankton model for medium and large zooplankton that explicitly resolves diel migration trajectories and biogeochemical fluxes. This model is integrated into the MOM6-COBALTv2 ocean physical-biogeochemical model, and applied in an idealized high-resolution (9.4 km) configuration of the North Atlantic. The model skillfully reproduces observed North Atlantic migrating zooplankton biomass and DVM patterns. Evaluation of the mechanisms controlling zooplankton migration depth reveals that chlorophyll shading reduces by 60 meters zooplankton migration depth in the subpolar gyre compared with the subtropical gyre, with pronounced seasonal variations linked to the spring bloom. Fine-scale spatial effects (<100 km) linked to eddy and frontal dynamics can either offset or reinforce the large-scale effect by up to 100 meters. This could imply that for phytoplankton-rich regions and filaments, which represent a major source of exportable carbon for migrating zooplankton, their high-chlorophyll content contributes to reducing zooplankton migration depth and carbon sequestration time.
more »
« less
Use of optical imaging datasets to assess biogeochemical contributions of the mesozooplankton
Abstract The increasing use of image-based observing systems in marine ecosystems allows for more quantitative analysis of the ecological zonation of zooplankton. Developing methods that take advantage of these systems can provide an increasingly nuanced understanding of how morphometric characteristics (especially size) are related to distribution, abundance and ecosystem function via a wider application of allometric calculations of biogeochemical fluxes. Using MOCNESS sampling of zooplankton near the Bermuda Atlantic Time Series and a ZooSCAN/EcoTaxa pipeline, we apply a new taxonomically resolved biomass to biovolume dataset and a suite of R scripts that provide information about the relationships between zooplankter size, taxonomy, distribution, depth of migration, magnitude of migration and biogeochemical contributions (e.g. respiratory O2 consumption). The analysis pipeline provides a framework for quantitatively comparing and testing hypotheses about the distribution, migration patterns and biogeochemical impacts of mesozooplankton. Specifically, our code helps to visualize a size-based structure in the extent of vertical migration and allow for a quantification of the relative importance of non-migratory versus migratory organisms of various size classes. It additionally allows us to quantify the error associated with various methods of calculating active flux, with size-based analysis being the most important methodological choice, and taxonomic identification being the least.
more »
« less
- PAR ID:
- 10303934
- Editor(s):
- Irigoien, Xabier
- Date Published:
- Journal Name:
- Journal of Plankton Research
- Volume:
- 43
- Issue:
- 3
- ISSN:
- 0142-7873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Particle cycling rates in marine systems are difficult to measure directly, but of great interest in understanding how carbon and other elements are distributed throughout the ocean. Here, rates of particle production, aggregation, disaggregation, sinking, remineralization, and transport mediated by zooplankton diel vertical migration were estimated from size-fractionated measurements of particulate organic carbon (POC) concentration collected during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) cruise at Station P in summer 2018. POC data were combined with a particle cycling model using an inverse method. Our estimates of the total POC settling flux throughout the water column are consistent with those derived from thorium-234 disequilibrium and sediment traps. A budget for POC in two size fractions, small (1–51 µm) and large (> 51 µm), was produced for both the euphotic zone (0–100 m) and the upper mesopelagic zone (100–500 m). We estimated that POC export at the base of the euphotic zone was 2.2 ± 0.8 mmol m−2 d−1, and that both small and large particles contributed considerably to the total export flux along the water column. The model results indicated that throughout the upper 500 m, remineralization leads to a larger loss of small POC than does aggregation, whereas disaggregation results in a larger loss of large POC than does remineralization. Of the processes explicitly represented in the model, zooplankton diel vertical migration is a larger source of large POC to the upper mesopelagic zone than the convergence of large POC due to particle sinking. Positive model residuals reveal an even larger unidentified source of large POC in the upper mesopelagic zone. Overall, our posterior estimates of particle cycling rate constants do not deviate much from values reported in the literature, i.e., size-fractionated POC concentration data collected at Station P are largely consistent with prior estimates given their uncertainties. Our budget estimates should provide a useful framework for the interpretation of process-specific observations obtained by various research groups in EXPORTS. Applying our inverse method to other systems could provide insight into how different biogeochemical processes affect the cycling of POC in the upper water column.more » « less
-
Abstract Background Migrations in temperate systems typically have two migratory phases, spring and autumn, and many migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route . Methods We analyzed autumn migrations of Arctic barren-ground caribou ( Rangifer tarandus ) as a series of persistent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-parameter movement model at the individual-level and estimated annual population-level parameters for weather covariates on 389 individual-seasons across 9 years. Results Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migratory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resulted in diverse environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns. Conclusions By analyzing autumn migration as a continuous process across the entire migration period, we found that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their movements throughout their annual cycle. These insights have implications for how long-distance migratory patterns may change as the Arctic climate continues to warm.more » « less
-
Abstract Due to historical under‐sampling of the deep ocean, the distributional ranges of mesopelagic zooplankton are not well documented, leading to uncertainty about the mechanisms that shape midwater zooplankton community composition. Using a combination of DNA metabarcoding (18S‐V4 and mtCOI) and trait‐based analysis, we characterized zooplankton diversity and community composition in the upper 1000 m of the northeast Pacific Ocean. We tested whether the North Pacific Transition Zone is a biogeographic boundary region for mesopelagic zooplankton. We also tested whether zooplankton taxa occupying different vertical habitats and exhibiting different ecological traits differed in the ranges of temperature, Chl‐a, and dissolved oxygen conditions inhabited. The depth of the maximum taxonomic richness deepened with increasing latitude in the North Pacific. Community similarity in the mesopelagic zone also increased in comparison with the epipelagic zone, and no evidence was found for a biogeographic boundary between previously delineated mesopelagic biogeochemical provinces. Epipelagic zooplankton exhibited broader temperature and Chl‐aranges than mesopelagic taxa. Within the epipelagic, taxa with broader temperature and Chl‐aranges also had broader distributional ranges. However, mesopelagic taxa were distributed across wider dissolved oxygen ranges, and within the mesopelagic, only oxygen ranges covaried with distributional ranges. Environmental and distributional ranges also varied among traits, both for epipelagic taxa and mesopelagic taxa. The strongest differences in both environmental and distributional ranges were observed for taxa with or without diel vertical migration behavior. Our results suggest that species traits can influence the differential effects of physical dispersal and environmental selection in shaping biogeographic distributions.more » « less
-
Abstract Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation‐by‐distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation‐by‐distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl.more » « less
An official website of the United States government

