skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prospects for Reengineering Agrobacterium tumefaciens for T-DNA Delivery to Chloroplasts
Targeting the phiC31 phage integrase for direct export from Agrobacterium to chloroplasts reveals the feasibility of retargeting the Agrobacterium Vir proteins for T-DNA delivery to chloroplasts.  more » « less
Award ID(s):
1716102 2037155
PAR ID:
10304035
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Plant Physiology
Volume:
186
Issue:
1
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Agrobacterium‐mediated transient expression methods are widely used to study gene function in both model and non‐model plants. Using a dual‐luciferase assay, we quantified the effect ofAgrobacterium‐infiltration parameters on the transient transformation efficiency ofCatharanthus roseusseedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre‐ and post‐infiltration dark incubation and is less sensitive to theAgrobacteriumgrowth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven‐ to eight‐fold while a dark incubation pre‐ and post‐infiltration increased transformation efficiency by five‐ to 13‐fold.Agrobacteriumin exponential compared with stationary phase increased transformation efficiency by two‐fold. Finally, we quantified the variation in ourAgrobacterium‐infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6‐fold in raw firefly luciferase (FLUC) and rawRenillaluciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation ofAgrobacteriuminfiltration inC. roseusseedlings will facilitate the study of this important medicinal plant and will expand the application ofAgrobacterium‐mediated transformation methods in other plant species. 
    more » « less
  2. Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non- Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid. 
    more » « less
  3. Summary Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter‐kingdom gene transfer capability madeAgrobacteriuman essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such asAgrobacterium‐host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA‐guided integrase system forAgrobacteriumgenome engineering. In this work, we demonstrate thatINsertion ofTransposableElements byGuideRNA–AssistedTargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre‐loxPrecombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies forAgrobacteriumspecies and their gene functional analyses. 
    more » « less
  4. Although plant microbiome assembly involves a series of both plant–microbe and microbe–microbe interactions, the latter is less often directly tested. Here, we investigate a role for Streptomyces strains to influence assembly of other bacteria into root microbiomes through the use of two synthetic communities (SynComs): a 21-member community including four Streptomyces strains and a 17-member community lacking those Streptomyces strains. Following inoculation with these SynComs on wild-type Arabidopsis thaliana Col-0, differential abundance modeling on root endosphere 16S ribosomal RNA gene amplicon sequencing data revealed altered abundance of four diverse SynCom members: Arthrobacter sp. 131, Agrobacterium sp. 33, Burkholderia sp. CL11, and Ralstonia sp. CL21. Modeling results were tested by seedling coinoculation experiments with the four Streptomyces strains and differentially abundant members, which confirmed the predicted decreased abundance for Arthrobacter sp. 131, Agrobacterium sp. 33, and Ralstonia sp. CL21 when Streptomyces strains were present. We further characterized how the phytohormone salicylic acid (SA) mediates Streptomyces strains’ influence over Agrobacterium sp. 33 and Burkholderia sp. CL11 seedling colonization. Although decreased colonization of Ralstonia sp. CL21 and Arthrobacter sp. 131 when Streptomyces spp. are present were not influenced by SA, direct antibiosis of Arthrobacter sp. 131 by Streptomyces was observed. These results highlight a role for Streptomyces-mediated microbial interactions during plant root microbiome assembly as well as distinct mechanisms that mediate them. Understanding the role of microbial interactions during microbiome assembly will inform the production of beneficial microbial treatments for use in agricultural fields. 
    more » « less
  5. Summary Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant–plant interactions and molecular trafficking. However, a major barrier toC. campestrisresearch is that a method to generate stable transgenic plants has not yet been developed.Here, we describe the development of aCuscutatransformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2andCcGRF/GIF), leading to a robust protocol forAgrobacterium‐mediatedC. campestristransformation.The stably transformed and regenerated RUBYC. campestrisplants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T‐DNA integration in the parasite genome were confirmed through TAIL‐PCR. TransformedC. campestrisalso produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for theAgrobacterium‐mediated transformation, but may also provide insight into the movement of molecules fromC. campestristo the host during parasitism.Thus, the protocol for transformation ofC. campestrisreported here overcomes a major obstacle toCuscutaresearch and opens new possibilities for studying parasitic plants and their interactions with hosts. 
    more » « less