skip to main content


This content will become publicly available on April 30, 2024

Title: Forecasting COVID-19 Vaccination Rates using Social Media Data
The COVID-19 pandemic has had a profound impact on the global community, and vaccination has been recognized as a crucial intervention. To gain insight into public perceptions of COVID-19 vaccines, survey studies and the analysis of social media platforms have been conducted. However, existing methods lack consideration of individual vaccination intentions or status and the relationship between public perceptions and actual vaccine uptake. To address these limitations, this study proposes a text classification approach to identify tweets indicating a user’s intent or status on vaccination. A comparative analysis between the proportions of tweets from different categories and real-world vaccination data reveals notable alignment, suggesting that tweets may serve as a precursor to actual vaccination status. Further, regression analysis and time series forecasting were performed to explore the potential of tweet data, demonstrating the significance of incorporating tweet data in predicting future vaccination status. Finally, clustering was applied to the tweet sets with positive and negative labels to gain insights into underlying focuses of each stance.  more » « less
Award ID(s):
1917112 2133960
NSF-PAR ID:
10440505
Author(s) / Creator(s):
;
Date Published:
Journal Name:
WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
Page Range / eLocation ID:
1020 to 1029
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust. 
    more » « less
  2. Abstract

    Most studies of policy entrepreneurship seek to understand how entrepreneurs influence the behavior of policy‐makers in the agenda‐setting or decision‐making phases of the policy process. Recent scholarship has sought to understand what role entrepreneurs might play in policy implementation by focusing on their ability to influence bureaucrats' discretion and behavior. However, these studies overlook the potentially critical influence of policy entrepreneurs during the implementation of “opt‐in” policies that require voluntary compliance by individuals to be successful. Here, we consider whether and how a visible policy entrepreneur can impact opt‐in policy implementation, focusing on their credibility—or ability to gain public trust—as a potential driving factor of their influence. Using the empirical context of COVID‐19 vaccination recommendations, we identify Dr. Anthony Fauci as a highly visible policy entrepreneur and assess his influence on individual vaccine intention and uptake. Drawing on data from a novel panel survey of the American public on attitudes about the virus, risk, politics, and vaccination during the first several months of the COVID‐19 vaccine rollout in the United States, we test the relationship between respondent trust in Dr. Fauci and changes in reported intention to vaccinate and vaccination uptake across time. We find that trust in Dr. Fauci is an important predictor for influencing individuals' intention to vaccinate and actual vaccination behavior.

     
    more » « less
  3. null (Ed.)
    The Tweet Collection Management (TWT) Team aims to ingest 5 billion tweets, clean this data, analyze the metadata present, extract key information, classify tweets into categories, and finally, index these tweets into Elasticsearch to browse and query. The main deliverable of this project is a running software application for searching tweets and for viewing Twitter collections from Digital Library Research Laboratory (DLRL) event archive projects. As a starting point, we focused on two development goals: (1) hashtag-based and (2) username-based search for tweets. For IR1, we completed extraction of two fields within our sample collection: hashtags and username. Sample code for TwiRole, a user-classification program, was investigated for use in our project. We were able to sample from multiple collections of tweets, spanning topics like COVID-19 and hurricanes. Initial work encompassed using a sample collection, provided via Google Drive. An NFS-based persistent storage was later involved to allow access to larger collections. In total, we have developed 9 services to extract key information like username, hashtags, geo-location, and keywords from tweets. We have also developed services to allow for parsing and cleaning of raw API data, and backup of data in an Apache Parquet filestore. All services are Dockerized and added to the GitLab Container Registry. The services are deployed in the CS cloud cluster to integrate services into the full search engine workflow. A service is created to convert WARC files to JSON for reading archive files into the application. Unit testing of services is complete and end-to-end tests have been conducted to improve system robustness and avoid failure during deployment. The TWT team has indexed 3,200 tweets into the Elasticsearch index. Future work could involve parallelization of the extraction of metadata, an alternative feature-flag approach, advanced geo-location inference, and adoption of the DMI-TCAT format. Key deliverables include a data body that allows for search, sort, filter, and visualization of raw tweet collections and metadata analysis; a running software application for searching tweets and for viewing Twitter collections from Digital Library Research Laboratory (DLRL) event archive projects; and a user guide to assist those using the system. 
    more » « less
  4. Abstract STUDY QUESTION

    To what extent is preconception maternal or paternal coronavirus disease 2019 (COVID-19) vaccination associated with miscarriage incidence?

    SUMMARY ANSWER

    COVID-19 vaccination in either partner at any time before conception is not associated with an increased rate of miscarriage.

    WHAT IS KNOWN ALREADY

    Several observational studies have evaluated the safety of COVID-19 vaccination during pregnancy and found no association with miscarriage, though no study prospectively evaluated the risk of early miscarriage (gestational weeks [GW] <8) in relation to COVID-19 vaccination. Moreover, no study has evaluated the role of preconception vaccination in both male and female partners.

    STUDY DESIGN, SIZE, DURATION

    An Internet-based, prospective preconception cohort study of couples residing in the USA and Canada. We analyzed data from 1815 female participants who conceived during December 2020–November 2022, including 1570 couples with data on male partner vaccination.

    PARTICIPANTS/MATERIALS, SETTING, METHODS

    Eligible female participants were aged 21–45 years and were trying to conceive without use of fertility treatment at enrollment. Female participants completed questionnaires at baseline, every 8 weeks until pregnancy, and during early and late pregnancy; they could also invite their male partners to complete a baseline questionnaire. We collected data on COVID-19 vaccination (brand and date of doses), history of SARS-CoV-2 infection (yes/no and date of positive test), potential confounders (demographic, reproductive, and lifestyle characteristics), and pregnancy status on all questionnaires. Vaccination status was categorized as never (0 doses before conception), ever (≥1 dose before conception), having a full primary sequence before conception, and completing the full primary sequence ≤3 months before conception. These categories were not mutually exclusive. Participants were followed up from their first positive pregnancy test until miscarriage or a censoring event (induced abortion, ectopic pregnancy, loss to follow-up, 20 weeks’ gestation), whichever occurred first. We estimated incidence rate ratios (IRRs) for miscarriage and corresponding 95% CIs using Cox proportional hazards models with GW as the time scale. We used propensity score fine stratification weights to adjust for confounding.

    MAIN RESULTS AND THE ROLE OF CHANCE

    Among 1815 eligible female participants, 75% had received at least one dose of a COVID-19 vaccine by the time of conception. Almost one-quarter of pregnancies resulted in miscarriage, and 75% of miscarriages occurred <8 weeks’ gestation. The propensity score-weighted IRR comparing female participants who received at least one dose any time before conception versus those who had not been vaccinated was 0.85 (95% CI: 0.63, 1.14). COVID-19 vaccination was not associated with increased risk of either early miscarriage (GW: <8) or late miscarriage (GW: 8–19). There was no indication of an increased risk of miscarriage associated with male partner vaccination (IRR = 0.90; 95% CI: 0.56, 1.44).

    LIMITATIONS, REASONS FOR CAUTION

    The present study relied on self-reported vaccination status and infection history. Thus, there may be some non-differential misclassification of exposure status. While misclassification of miscarriage is also possible, the preconception cohort design and high prevalence of home pregnancy testing in this cohort reduced the potential for under-ascertainment of miscarriage. As in all observational studies, residual or unmeasured confounding is possible.

    WIDER IMPLICATIONS OF THE FINDINGS

    This is the first study to evaluate prospectively the relation between preconception COVID-19 vaccination in both partners and miscarriage, with more complete ascertainment of early miscarriages than earlier studies of vaccination. The findings are informative for individuals planning a pregnancy and their healthcare providers.

    STUDY FUNDING/COMPETING INTEREST(S)

    This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Health [R01-HD086742 (PI: L.A.W.); R01-HD105863S1 (PI: L.A.W. and M.L.E.)], the National Institute of Allergy and Infectious Diseases (R03-AI154544; PI: A.K.R.), and the National Science Foundation (NSF-1914792; PI: L.A.W.). The funders had no role in the study design, data collection, analysis and interpretation of data, writing of the report, or the decision to submit the paper for publication. L.A.W. is a fibroid consultant for AbbVie, Inc. She also receives in-kind donations from Swiss Precision Diagnostics (Clearblue home pregnancy tests) and Kindara.com (fertility apps). M.L.E. received consulting fees from Ro, Hannah, Dadi, VSeat, and Underdog, holds stock in Ro, Hannah, Dadi, and Underdog, is a past president of SSMR, and is a board member of SMRU. K.F.H. reports being an investigator on grants to her institution from UCB and Takeda, unrelated to this study. S.H.-D. reports being an investigator on grants to her institution from Takeda, unrelated to this study, and a methods consultant for UCB and Roche for unrelated drugs. The authors report no other relationships or activities that could appear to have influenced the submitted work.

    TRIAL REGISTRATION NUMBER

    N/A.

     
    more » « less
  5. The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans’ sentiment toward vaccines was relatively lower than other races. 
    more » « less