Abstract Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video abstract:https://youtu.be/BpDPOOqw‐ns
more »
« less
A Survey on Causal Inference
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy, and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well-known causal inference frameworks. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine, and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
more »
« less
- Award ID(s):
- 1747614
- PAR ID:
- 10304124
- Date Published:
- Journal Name:
- ACM Transactions on Knowledge Discovery from Data
- Volume:
- 15
- Issue:
- 5
- ISSN:
- 1556-4681
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Survey questionnaires are commonly used by psychologists and social scientists to measure various latent traits of study subjects. Various causal inference methods such as the potential outcome framework and structural equation models have been used to infer causal effects. However, the majority of these methods assume the knowledge of true causal structure, which is unknown for many applications in psychological and social sciences. This calls for alternative causal approaches for analyzing such questionnaire data. Bayesian networks are a promising option as they do not require causal structure to be knowna prioribut learn it objectively from data. Although we have seen some recent successes of using Bayesian networks to discover causality for psychological questionnaire data, their techniques tend to suffer from causal non-identifiability with observational data. In this paper, we propose the use of a state-of-the-art Bayesian network that is proven to be fully identifiable for observational ordinal data. We develop a causal structure learning algorithm based on an asymptotically justified BIC score function, a hill-climbing search strategy, and the bootstrapping technique, which is able to not only identify a unique causal structure but also quantify the associated uncertainty. Using simulation studies, we demonstrate the power of the proposed learning algorithm by comparing it with alternative Bayesian network methods. For illustration, we consider a dataset from a psychological study of the functional relationships among the symptoms of obsessive-compulsive disorder and depression. Without any prior knowledge, the proposed algorithm reveals some plausible causal relationships. This paper is accompanied by a user-friendly open-source R package OrdCD on CRAN.more » « less
-
Identifying cause-effect relations among variables is a key step in the decision-making process. Whereas causal inference requires randomized experiments, researchers and policy makers are increasingly using observational studies to test causal hypotheses due to the wide availability of data and the infeasibility of experiments. The matching method is the most used technique to make causal inference from observational data. However, the pair assignment process in one-to-one matching creates uncertainty in the inference because of different choices made by the experimenter. Recently, discrete optimization models have been proposed to tackle such uncertainty; however, they produce 0-1 nonlinear problems and lack scalability. In this work, we investigate this emerging data science problem and develop a unique computational framework to solve the robust causal inference test instances from observational data with continuous outcomes. In the proposed framework, we first reformulate the nonlinear binary optimization problems as feasibility problems. By leveraging the structure of the feasibility formulation, we develop greedy schemes that are efficient in solving robust test problems. In many cases, the proposed algorithms achieve a globally optimal solution. We perform experiments on real-world data sets to demonstrate the effectiveness of the proposed algorithms and compare our results with the state-of-the-art solver. Our experiments show that the proposed algorithms significantly outperform the exact method in terms of computation time while achieving the same conclusion for causal tests. Both numerical experiments and complexity analysis demonstrate that the proposed algorithms ensure the scalability required for harnessing the power of big data in the decision-making process. Finally, the proposed framework not only facilitates robust decision making through big-data causal inference, but it can also be utilized in developing efficient algorithms for other nonlinear optimization problems such as quadratic assignment problems. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation of the National Science Foundation [Grant 2047094]. Supplemental Material: The online supplements are available at https://doi.org/10.1287/ijoc.2022.1226 .more » « less
-
ABSTRACT Disparities in health or well‐being experienced by minority groups can be difficult to study using the traditional exposure‐outcome paradigm in causal inference, since potential outcomes in variables such as race or sexual minority status are challenging to interpret. Causal decomposition analysis addresses this gap by positing causal effects on disparities under interventions to other intervenable exposures that may play a mediating role in the disparity. While invoking weaker assumptions than causal mediation approaches, decomposition analyses are often conducted in observational settings and require uncheckable assumptions that eliminate unmeasured confounders. Leveraging the marginal sensitivity model, we develop a sensitivity analysis for weighted causal decomposition estimators and use the percentile bootstrap to construct valid confidence intervals for causal effects on disparities. We also propose a two‐parameter reformulation that enhances interpretability and facilitates an intuitive understanding of the plausibility of unmeasured confounders and their effects. We illustrate our framework on a study examining the effect of parental support on disparities in suicidal ideation among sexual minority youth. We find that the effect is small and sensitive to unmeasured confounding, suggesting that further screening studies are needed to identify mitigating interventions in this vulnerable population.more » « less
-
In the absence of data from a randomized trial, researchers may aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves, that is, the survival curves were the population under study to be assigned to receive the treatment or not. Under certain conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival curve can be identified with a covariate-adjusted survival curve. In this article, we propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g. machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time, or an arbitrary mix of the two. We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality.more » « less
An official website of the United States government

