skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Abstract. Tropical ecosystems contribute significantly to global emissionsof methane (CH4), and landscape topography influences the rate ofCH4 emissions from wet tropical forest soils. However, extreme eventssuch as drought can alter normal topographic patterns of emissions. Here weexplain the dynamics of CH4 emissions during normal and droughtconditions across a catena in the Luquillo Experimental Forest, Puerto Rico.Valley soils served as the major source of CH4 emissions in a normalprecipitation year (2016), but drought recovery in 2015 resulted in dramaticpulses in CH4 emissions from all topographic positions. Geochemicalparameters including (i) dissolved organic carbon (C), acetate, and soil pH and (ii) hydrological parameters like soil moisture and oxygen (O2)concentrations varied across the catena. During the drought, soil moisturedecreased in the slope and ridge, and O2 concentrations increased in thevalley. We simulated the dynamics of CH4 emissions with theMicrobial Model for Methane Dynamics-Dual Arrhenius and Michaelis–Menten (M3D-DAMM), which couples a microbialfunctional group CH4 model with a diffusivity module for solute and gastransport within soil microsites. Contrasting patterns of soil moisture,O2, acetate, and associated changes in soil pH with topographyregulated simulated CH4 emissions, but emissions were also altered byrate-limited diffusion in soil microsites. Changes in simulated availablesubstrate for CH4 production (acetate, CO2, and H2) andoxidation (O2 and CH4) increased the predicted biomass ofmethanotrophs during the drought event and methanogens during droughtrecovery, which in turn affected net emissions of CH4. A variance-basedsensitivity analysis suggested that parameters related to aceticlasticmethanogenesis and methanotrophy were most critical to simulate net CH4emissions. This study enhanced the predictive capability for CH4emissions associated with complex topography and drought in wet tropicalforest soils.  more » « less
Award ID(s):
1831952
PAR ID:
10304273
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
5
ISSN:
1726-4189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall‐induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5‐fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community‐wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low‐lying wet sedge tundra soils across the Arctic. 
    more » « less
  2. Abstract Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change. 
    more » « less
  3. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less
  4. Abstract. The warming of the Arctic is affecting the carbon cycle of tundraecosystems. Most research on carbon fluxes from Arctic tundra ecosystems hasfocused on abiotic environmental controls (e.g., temperature, rainfall, orradiation). However, Arctic tundra vegetation, and therefore the carbonbalance of these ecosystems, can be substantially impacted by herbivory. Inthis study we tested how vegetation consumption by brown lemmings (Lemmus trimucronatus) canimpact carbon exchange of a wet-sedge tundra ecosystem near Utqiaġvik,Alaska during the summer and the recovery of vegetation during the followingsummer. We placed brown lemmings in individual enclosure plots and testedthe impact of lemmings' herbivory on carbon dioxide (CO2) fluxes, methane(CH4) fluxes, and the normalized difference vegetation index (NDVI)immediately after lemming removal and during the following growing season.During the first summer of the experiment, lemmings' herbivory reduced plantbiomass (as shown by the decrease in the NDVI) and decreased net CO2uptake while not significantly impacting CH4 emissions. CH4emissions were likely not significantly affected due to CH4 beingproduced deeper in the soil and escaping from the stem bases of the vascularplants. The summer following the lemming treatments, NDVI and net CO2fluxes returned to magnitudes similar to those observed before the start ofthe experiment, suggesting a complete recovery of the vegetation and atransitory nature of the impact of lemming herbivory. Overall, lemmingherbivory has short-term but substantial effects on carbon sequestration byvegetation and might contribute to the considerable interannual variabilityin CO2 fluxes from tundra ecosystems. 
    more » « less
  5. Abstract Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate. 
    more » « less