skip to main content

Title: Efficient K-Shot Learning with Regularized Deep Networks
Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of more » neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10% « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an increasing number of pre-trained deep neural network models. However, it is still unclear how to effectively use these models for a new task. Transfer learning, which aims to transfer knowledge from source tasks to a target task, is an effective solution to this problem. Fine-tuning is a popular transfer learning technique for deep neural networks where a few rounds of training are applied to the parameters of a pre-trained model to adapt them to a new task. Despite its popularity, in this paper we show that fine-tuning suffers from several drawbacks. We propose an adaptive fine-tuning approach, called AdaFilter, which selects only a part of the convolutional filters in the pre-trained model to optimize on a per-example basis. We use a recurrent gated network to selectively fine-tune convolutional filters based on the activations of the previous layer. We experiment with 7 public image classification datasets and the results show that AdaFilter can reduce the average classification error of the standard fine-tuning by 2.54%.
  2. Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters.
  3. Existing approaches for learning word embedding often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. How to learn accurate representations of these words to augment a pre-trained embedding by only a few observations is a challenging research problem. In this paper, we formulate the learning of OOV embedding as a few-shot regression problem by fitting a representation function to predict an oracle embedding vector (defined as embedding trained with abundant observations) based on limited contexts. Specifically, we propose a novel hierarchical attention network-based embedding framework to serve as the neural regression function, in which the context information of a word is encoded and aggregated from K observations. Furthermore, we propose to use Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing an accurate embedding for OOV words and improves downstream tasks when the embedding is utilized.
  4. Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the modelmore »on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively.« less
  5. Recent research suggests that in vitro neural networks created from dissociated neurons may be used for computing and performing machine learning tasks. To develop a better artificial intelligent system, a hybrid bio-silicon computer is worth exploring, but its performance is still inferior to that of a silicon-based computer. One reason may be that a living neural network has many intrinsic properties, such as random network connectivity, high network sparsity, and large neural and synaptic variability. These properties may lead to new design considerations, and existing algorithms need to be adjusted for living neural network implementation. This work investigates the impact of neural variations and random connections on inference with learning algorithms. A two-layer hybrid bio-silicon platform is constructed and a five-step design method is proposed for the fast development of living neural network algorithms. Neural variations and dynamics are verified by fitting model parameters with biological experimental results. Random connections are generated under different connection probabilities to vary network sparsity. A multi-layer perceptron algorithm is tested with biological constraints on the MNIST dataset. The results show that a reasonable inference accuracy can be achieved despite the presence of neural variations and random network connections. A new adaptive pre-processing technique ismore »proposed to ensure good learning accuracy with different living neural network sparsity.« less