The emergence of seemingly similar representations across tasks and neural architectures suggests that convergent properties may underlie sophisticated behavior. One form of representation that seems particularly fundamental to reasoning in many artificial (and perhaps natural) networks is the formation of world models, which decompose observed task structures into re-usable perceptual primitives and task-relevant relations. In this work, we show that auto-regressive transformers tasked with solving mazes learn to linearly represent the structure of mazes, and that the formation of these representations coincides with a sharp increase in generalization performance. Furthermore, we find preliminary evidence for Adjacency Heads which may play a role in computing valid paths through mazes.
more »
« less
Formation of Representations in Neural Networks
Understanding neural representations will help open the black box of neural networks and advance our scientific understanding of modern AI systems. However, how complex, structured, and transferable representations emerge in modern neural networks has remained a mystery. Building on previous results, we propose the Canonical Representation Hypothesis (CRH), which posits a set of six alignment relations to universally govern the formation of representations in most hidden layers of a neural network. Under the CRH, the latent representations (R), weights (W), and neuron gradients (G) become mutually aligned during training. This alignment implies that neural networks naturally learn compact representations, where neurons and weights are invariant to task-irrelevant transformations. We then show that the breaking of CRH leads to the emergence of reciprocal power-law relations between R, W, and G, which we refer to as the Polynomial Alignment Hypothesis (PAH). We present a minimal-assumption theory demonstrating that the balance between gradient noise and regularization is crucial for the emergence the canonical representation. The CRH and PAH lead to an exciting possibility of unifying major key deep learning phenomena, including neural collapse and the neural feature ansatz, in a single framework.
more »
« less
- Award ID(s):
- 2134108
- PAR ID:
- 10565432
- Publisher / Repository:
- Center for Brains, Minds and Machines (CBMM)
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Massachusetts Institute of Technology
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lexical exact match systems that use inverted lists are a fundamental text retrieval architecture. A recent advance in neural IR, COIL, extends this approach with contextualized inverted lists from a deep language model backbone and performs retrieval by comparing contextualized query-document term representation, which is effective but computationally expensive. This paper explores the effectiveness-efficiency tradeoff in COIL-style systems, aiming to reduce the computational complexity of retrieval while preserving term semantics. It proposes COILcr, which explicitly factorizes COIL into intra-context term importance weights and cross-context semantic representations. At indexing time, COILcr further maps term semantic representations to a smaller set of canonical representations. Experiments demonstrate that canonical representations can efficiently preserve term semantics, reducing the storage and computational cost of COIL-based retrieval while maintaining model performance. The paper also discusses and compares multiple heuristics for canonical representation selection and looks into its performance in different retrieval settings.more » « less
-
Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form $f(x)=g(Ux)$ where $$U: \R^d \to \R^r$$ with $d≫r$. When the degree of f⋆ is p, it is known that n≍dp samples are necessary to learn f⋆ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to f. This results in an improved sample complexity of n≍d2r+drp. Furthermore, in a transfer learning setup where the data distributions in the source and target domain share the same representation U but have different polynomial heads we show that a popular heuristic for transfer learning has a target sample complexity independent of d.more » « less
-
Spatial relations, such as above, below, between, and containment, are important mediators in children’s understanding of the world (Piaget, 1954). The development of these relational categories in infancy has been extensively studied (Quinn, 2003) yet little is known about their computational underpinnings. Using developmental tests, we examine the extent to which deep neural networks, pretrained on a standard vision benchmark or egocentric video captured from one baby’s perspective, form categorical representations for visual stimuli depicting relations. Notably, the networks did not receive any explicit training on relations. We then analyze whether these networks recover similar patterns to ones identified in development, such as reproducing the relative difficulty of categorizing different spatial relations and different stimulus abstractions. We find that the networks we evaluate tend to recover many of the patterns observed with the simpler relations of “above versus below” or “between versus outside”, but struggle to match developmental findings related to “containment”. We identify factors in the choice of model architecture, pretraining data, and experimental design that contribute to the extent the networks match developmental patterns, and highlight experimental predictions made by our modeling results. Our results open the door to modeling infants’ earliest categorization abilities with modern machine learning tools and demonstrate the utility and productivity of this approach.more » « less
-
Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperforming both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart.more » « less
An official website of the United States government

