skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Residue-Free Computing
Abstract Computer applications often leave traces or residues that enable forensic examiners to gain a detailed understanding of the actions a user performed on a computer. Such digital breadcrumbs are left by a large variety of applications, potentially (and indeed likely) unbeknownst to their users. This paper presents the concept of residue-free computing in which a user can operate any existing application installed on their computer in a mode that prevents trace data from being recorded to disk, thus frustrating the forensic process and enabling more privacy-preserving computing. In essence, residue-free computing provides an “incognito mode” for any application. We introduce our implementation of residue-free computing, R esidue F ree , and motivate R esidue F ree by inventorying the potentially sensitive and privacy-invasive residue left by popular applications. We demonstrate that R esidue F ree allows users to operate these applications without leaving trace data, while incurring modest performance overheads.  more » « less
Award ID(s):
1718498
PAR ID:
10304325
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2021
Issue:
4
ISSN:
2299-0984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In this paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS. 
    more » « less
  2. Many organizations maintain and operate large shared computing clusters, since they can substantially reduce computing costs by leveraging statistical multiplexing to amortize it across all users. Importantly, such shared clusters are generally not free to use, but have an internal pricing model that funds their operation. Since employees at many large organizations, especially Universities, have some budgetary autonomy over purchase decisions, internal shared clusters are increasingly competing for users with cloud platforms, which may offer lower costs and better performance. As a result, many organizations are shifting their shared clusters to operate on cloud resources. This paper empirically analyzes the user incentives for shared cloud clusters under two different pricing models using an 8-year job trace from a large shared cluster for a large University system. Our analysis shows that, with either pricing model, a large fraction of users have little financial incentive to participate in a shared cloud cluster compared to directly acquiring resources from a cloud platform. While shared cloud clusters can provide some limited reductions in cost by leveraging reserved instances at a discount, due to bursty workloads, realizing these reductions generally requires imposing long job waiting times, which for many users are likely not worth the cost reduction. In particular, we show that, assuming users defect from the shared cluster if their wait time is greater than 15x their average job runtime, over 80% of the users would defect, which increases the price of the remaining users such that it eliminates any incentive to participate in a shared cluster. Thus, while shared cloud clusters may provide users other benefits, their financial incentives are weak. 
    more » « less
  3. Edna is a system that helps web applications allow users to remove their data without permanently losing their accounts, anonymize their old data, and selectively dissociate personal data from public profiles. Edna helps developers support these features while maintaining application functionality and referential integrity via disguising and revealing transformations. Disguising selectively renders user data inaccessible via encryption, and revealing enables the user to restore their data to the application. Edna's techniques allow transformations to compose in any order, e.g., deleting a previously anonymized user's account, or restoring an account back to an anonymized state. Experiments with Edna that add disguising and revealing transformations to three real-world applications show that Edna enables new privacy features in existing applications with low developer effort, is simpler than alternative approaches, and adds limited overhead to applications. 
    more » « less
  4. The Windows registry contains a plethora of information in a hierarchical database. It includes system-wide settings, user preferences, installed programs, and recently accessed files and maintains timestamps that can be used to construct a detailed timeline of user activities. However, these data are unencrypted and thus vulnerable to exploitation by malicious actors who gain access to this repository. To address this security and privacy concern, we propose a novel approach that efficiently encrypts and decrypts sensitive registry data in real time. Our developed proof-of-concept program intercepts interactions between the registry’s application programming interfaces (APIs) and other Windows applications using an advanced hooking technique. This enables the proposed system to be transparent to users without requiring any changes to the operating system or installed software. Our approach also implements the data protection API (DPAPI) developed by Microsoft to securely manage each user’s encryption key. Ultimately, our research provides an enhanced security and privacy framework for the Windows registry, effectively fortifying the registry against security and privacy threats while maintaining its accessibility to legitimate users and applications. 
    more » « less
  5. Emerging Virtual Reality (VR) displays with embedded eye trackers are currently becoming a commodity hardware (e.g., HTC Vive Pro Eye). Eye-tracking data can be utilized for several purposes, including gaze monitoring, privacy protection, and user authentication/identification. Identifying users is an integral part of many applications due to security and privacy concerns. In this paper, we explore methods and eye-tracking features that can be used to identify users. Prior VR researchers explored machine learning on motion-based data (such as body motion, head tracking, eye tracking, and hand tracking data) to identify users. Such systems usually require an explicit VR task and many features to train the machine learning model for user identification. We propose a system to identify users utilizing minimal eye-gaze-based features without designing any identification-specific tasks. We collected gaze data from an educational VR application and tested our system with two machine learning (ML) models, random forest (RF) and k-nearest-neighbors (kNN), and two deep learning (DL) models: convolutional neural networks (CNN) and long short-term memory (LSTM). Our results show that ML and DL models could identify users with over 98% accuracy with only six simple eye-gaze features. We discuss our results, their implications on security and privacy, and the limitations of our work. 
    more » « less