null
(Ed.)
While cloud platforms enable users to rent computing resources on demand to execute their jobs, buying fixed resources is still much cheaper than renting if their utilization is high. Thus, optimizing cloud costs requires users to determine how many fixed resources to buy versus rent based on their workload. In this paper, we introduce the concept of a waiting policy for cloud-enabled schedulers, which is the dual of a scheduling policy, and show that the optimal cost depends on it. We define multiple waiting policies and develop simple analytical models to reveal their tradeoff between fixed resource provisioning, cost, and job waiting time. We evaluate the impact of these waiting policies on a year-long production batch workload consisting of 14M jobs run on a 14.3k-core cluster, and show that a compound waiting policy decreases the cost (by 5%) and mean job waiting time (by 7x) compared to a fixed cluster of the current size.
more »
« less