skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Project ThaiPASS: international outreach blending astronomy and Python
Abstract We present our outreach program, theThailand–UK Python+Astronomy Summer School(ThaiPASS), a collaborative project comprising UK and Thai institutions and assess its impact and possible application to schools in the United Kingdom. Since its inception in 2018, the annual ThaiPASS has trained around 60 Thai high-school students in basic data handling skills using Python in the context of various astronomy topics, using current research from the teaching team. Our impact assessment of the 5 day summer schools shows an overwhelmingly positive response from students in both years, with over 80% of students scoring the activities above average in all activities but one. We use this data to suggest possible future improvements. We also discuss how ThaiPASS may inspire further outreach and engagement activities within the UK and beyond.  more » « less
Award ID(s):
1927130
PAR ID:
10304385
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Physics Education
Volume:
56
Issue:
3
ISSN:
0031-9120
Page Range / eLocation ID:
Article No. 035001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionRecent efforts including the U.S. Department of Education’sRaise the Bar: STEM Excellence for All Students, designed to strengthen Science, Technology, Engineering and Mathematics (STEM) education, typify the development of effective outreach programs implemented in high school settings to increase STEM achievement and literacy and to promote future careers in STEM. Specifically, artificial intelligence (AI) and machine learning (ML) are topics of great importance and interest but are often reserved for higher-level education. Introductions of complex subjects in high school promotes student efficacy, enthusiasm, and skill-development for STEM careers. Establishing strong partnerships between universities and high schools is mutually beneficial for the professional development of students, teachers, and professors. In this paper, we detail immersive outreach efforts and their effectiveness in a high school setting. MethodsFrom Spring 2021 to Spring 2024, we conducted eight data-science and analysis-coding style workshops along with two data science units, with 302 students participating in the data science workshops and 82 students in the data science units. All students who participated in the data science lessons completed a comprehensive final project. Surveys measuring knowledge and appeal to data science and coding were conducted both retrospectively and prospectively, before and after each workshop and the data science units. A 1 year follow up survey was conducted for students in the 2023 data science lessons (n= 23). ResultsOverall, average student interest significantly increased from 2.72 ± 1.08/5.0 (n= 205) to 3.15 ± 1.18/5.0 (n= 181,p= 0.001) during the data science workshops, while 70% of students expressed desire to continue with coding. Interest modestly increased in the data science lessons from 3.15 ± 0.65/4.0 to 3.17 ± 0.77/4.0 (n= 82,p= 0.8571), while knowledge significantly increased from 64.16% to 88.5% (% correct out of six questions) in the 2023 data science lessons and from 52.62% to 60.79% (% correct out of 29 questions) in the 2024 data science lessons. DiscussionIncreasing STEM exposure through outreach programs and a modified curriculum can positively alter students’ career trajectory and prepare them for the evolving technologically advanced world and the careers within it. 
    more » « less
  2. The benefits of undergraduate student experiences are well known. Students participating in research experience for undergraduates (REU) programs report increased skills and self-confidence, a greater sense of empowerment as learners and more motivation to pursue science or engineering careers and graduate degrees. REU programs generally aim to engage students in exciting and rewarding research and professional development experiences to motivate them to pursue careers or advanced degrees in the sciences, technology, engineering and math (STEM). Unlike most other types of summer internships, REU programs are typically very student-focused. The faculty mentors, projects, activities, seminars, tours, etc. are selected to generate a positive impact on the student participants. After many years of offering a successful REU experience, the AERIM REU program at Oakland University (OU) decided to include a K-12 outreach component to its list of REU activities. This decision was driven by the many documented benefits of service-learning programs, which not only are of value to the persons receiving the service, but also the students providing it. They also help students improve their interpersonal and communication skills and develop a better understanding of the needs of people with diverse or different backgrounds. After pivoting to a virtual format in the summer of 2021 due the Covid-19 pandemic, the AERIM REU program was once again offered in-person in the summer of 2022, hence allowing for an outreach activity. The initial plan was to partner with a non-profit science center in the city of UU. Unfortunately, the science center was experiencing staffing changes, as well as ongoing challenges due to Covid-19, so the AERIM REU PIs had to come up with an alternative. The school of engineering and computer science at OU has a robust and active K-12 outreach program and has partnered with the RRR society to offer a summer residential STEM program, targeting under-represented minority high-school girls from the city of UU. Working in coordination with the assistant director of outreach, AERIM REU students were tasked with developing outreach activities and presentations for the camp participants. Each REU team was responsible for developing one 1-1.5 hour activity. REU students were given complete flexibility to develop their outreach activities with little faculty influence, but were encouraged to focus on hands-on activities that could relate back to their ongoing REU research projects and that would excite the camp participants about STEM. In this paper, we report on the organization and results of this initiative. Assessment results of the outreach activity will also be shared. We believe that this type of information could prove to be of value to other REU program directors and faculty seeking to organize similar programs. 
    more » « less
  3. Schultz, G; Buxner, S; Jensen, J; Barnes, J (Ed.)
    hree-dimensional (3D) printing holds promise for students with blindness/visual impairments (B/VI) in addressing astronomy content, concept development, and providing access to information normally displayed visually. To help bolster astronomy and STEM opportunities for students with B/VI, we developed the STEM Career Exploration Lab (CEL), which employs tactile astronomy instruction via 3D printing and specially designed 3D-printed models. Our project centerpiece is the 3D printer build, where students with B/VI assemble and use a desktop 3D printer. To date, we have held sixteen week-long STEM CEL astronomy and 3D printing summer camps in twelve states (three states in each of the four main US census regions), serving a total of over 120 high school students with B/VI. We collaborated with Teachers of the Visually Impaired and general education STEM teachers via annual Educator Partner Institutes (EPIs) to develop our astronomy lessons and 3D models. These educators also assist with the STEM CEL summer camps. To date, thirty-seven teachers from twelve states have participated. We gathered pre- and post-intervention data via surveys, astronomy assessments, and student interviews, resulting in what is likely the largest research study on astronomy and 3D printing instruction for students with B/VI. We present our CEL approach, a short description of our lessons, initial project results, and some best practices. Once fully evaluated and refined, we will make our 3D models and astronomy activities freely available online. We find that with appropriate context and guidance, 3D printing is effective in increasing scientific understanding and showcasing scientific data for appreciation of astronomy. 
    more » « less
  4. Abstract Here, we describe the development, structure, and effectiveness of an outreach program, DrosoPHILA, that leverages the tools of our fly neurodevelopmental research program at the University of Pennsylvania to reinforce the biology curriculum in local public schools. DrosoPHILA was developed and is sustained by a continued collaboration between members of the Bashaw lab, experienced outreach educators, and teachers in the School District of Philadelphia. Since the program’s inception, we have collaborated with 18 teachers and over 2400 students. Student outcome data indicates significant positive attitude shifts around science identity and grade-appropriate knowledge gains. 
    more » « less
  5. Abstract BackgroundDetermining the root causes of persistent underrepresentation of different subpopulations in engineering remains a continued challenge. Because place‐based variation of resource distribution is not random and because school and community contexts influence high school outcomes, considering variation across those contexts should be paramount in broadening participation research. Purpose/HypothesisThis study takes a macroscopic systems view of engineering enrollments to understand variation across one state's public high school rates of engineering matriculation. Design/MethodThis study uses a dataset from the Virginia Longitudinal Data System that includes all students who completed high school from a Virginia public school from 2007 to 2014 (N= 685,429). We explore geographic variation in four‐year undergraduate engineering enrollment as a function of gender, race/ethnicity, and economically disadvantaged status. Additionally, we investigate the relationship between characteristics of the high school and community contexts and undergraduate engineering enrollment across Virginia's high schools using regression analysis. ResultsOur findings illuminate inequality in enrollment in engineering programs at four‐year institutions across high schools by gender, race, and socioeconomic status (and the intersections among those demographics). Different high schools have different engineering enrollment rates among students who attend four‐year postsecondary institutions. We show strong associations between high schools' engineering enrollment rates and four‐year institution enrollment rates as well as moderate associations for high schools' community socioeconomic status. ConclusionsStrong systemic forces need to be overcome to broaden participation in engineering. We demonstrate the insights that state longitudinal data systems can illuminate in engineering education research. 
    more » « less