skip to main content


Title: A human multi-lineage hepatic organoid model for liver fibrosis
Abstract To investigate the pathogenesis of a congenital form of hepatic fibrosis, human hepatic organoids were engineered to express the most common causative mutation for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Here we show that these hepatic organoids develop the key features of ARPKD liver pathology (abnormal bile ducts and fibrosis) in only 21 days. The ARPKD mutation increases collagen abundance and thick collagen fiber production in hepatic organoids, which mirrors ARPKD liver tissue pathology. Transcriptomic and other analyses indicate that the ARPKD mutation generates cholangiocytes with increased TGFβ pathway activation, which are actively involved stimulating myofibroblasts to form collagen fibers. There is also an expansion of collagen-producing myofibroblasts with markedly increased PDGFRB protein expression and an activated STAT3 signaling pathway. Moreover, the transcriptome of ARPKD organoid myofibroblasts resemble those present in commonly occurring forms of liver fibrosis. PDGFRB pathway involvement was confirmed by the anti-fibrotic effect observed when ARPKD organoids were treated with PDGFRB inhibitors. Besides providing insight into the pathogenesis of congenital (and possibly acquired) forms of liver fibrosis, ARPKD organoids could also be used to test the anti-fibrotic efficacy of potential anti-fibrotic therapies.  more » « less
Award ID(s):
2033302
PAR ID:
10304436
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Liver fibrosis is a wound healing process marked by excessive accumulation of extracellular matrix in the liver. A poly(rC)‐binding protein 2 (PCBP2) siRNA that reverses fibrogenesis in activated hepatic stellate cells (HSCs) has been recently discovered. However, targeted delivery of siRNAs to HSCs still remains a daunting challenge. Herein, a new strategy is developed to fabricate a multicomponent nanocomplex using siRNA/peptide nucleic acid (PNA) hybrid instead of chemically conjugated siRNA, thus increasing the scalability and feasibility of the siRNA nanocomplex for animal studies. The nanocomplex is modified with an insulin growth factor 2 receptor ‐specific peptide, which specifically binds to activated HSCs. The siRNA nanocomplex demonstrates a controllable size, high serum stability, and high cellular uptake in activated HSCs in vitro and in vivo. Anti‐fibrotic activity of the siRNA nanocomplex is evaluated in rats with carbon tetrachloride‐induced liver fibrosis. Treatment with the PCBP2 siRNA nanocomplex significantly inhibits the mRNA expressions of PCBP2 and type I collagen in fibrotic liver. The histology study reveals that the siRNA nanocomplex efficiently reduces the protein level of type I collagen and reverses liver fibrosis. The data suggests that the nanocomplex efficiently delivers the siRNA to fibrotic liver and produces a potent anti‐fibrotic effect.

     
    more » « less
  2. Abstract

    Despite considerable efforts in modeling liver disease in vitro, it remains difficult to recapitulate the pathogenesis of the advanced phases of non‐alcoholic fatty liver disease (NAFLD) with inflammation and fibrosis. Here, a liver‐on‐a‐chip platform with bioengineered multicellular liver microtissues is developed, composed of four major types of liver cells (hepatocytes, endothelial cells, Kupffer cells, and stellate cells) to implement a human hepatic fibrosis model driven by NAFLD: i) lipid accumulation in hepatocytes (steatosis), ii) neovascularization by endothelial cells, iii) inflammation by activated Kupffer cells (steatohepatitis), and iv) extracellular matrix deposition by activated stellate cells (fibrosis). In this model, the presence of stellate cells in the liver‐on‐a‐chip model with fat supplementation showed elevated inflammatory responses and fibrosis marker up‐regulation. Compared to transforming growth factor‐beta‐induced hepatic fibrosis models, this model includes the native pathological and chronological steps of NAFLD which shows i) higher fibrotic phenotypes, ii) increased expression of fibrosis markers, and iii) efficient drug transport and metabolism. Taken together, the proposed platform will enable a better understanding of the mechanisms underlying fibrosis progression in NAFLD as well as the identification of new drugs for the different stages of NAFLD.

     
    more » « less
  3. Abstract

    Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFβ pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.

     
    more » « less
  4. Abstract

    Retinal diseases are frequently characterized by the accumulation of excessive scar tissue found throughout the neural retina. However, the pathophysiology of retinal fibrosis remains poorly understood, and the cell types that contribute to the fibrotic response are incompletely defined. Here, we show that myofibroblast differentiation of mural cells contributes directly to retinal fibrosis. Using lineage tracing technology, we demonstrate that after chemical ocular injury, Myh11+ mural cells detach from the retinal microvasculature and differentiate into myofibroblasts to form an epiretinal membrane. Inhibition of TGFβR attenuates Myh11+ retinal mural cell myofibroblast differentiation, and diminishes the subsequent formation of scar tissue on the surface of the retina. We demonstrate retinal fibrosis within a murine model of oxygen-induced retinopathy resulting from the intravitreal injection of adipose Myh11-derived mesenchymal stem cells, with ensuing myofibroblast differentiation. In this model, inhibiting TGFβR signaling does not significantly alter myofibroblast differentiation and collagen secretion within the retina. This work shows the complexity of retinal fibrosis, where scar formation is regulated both by TGFβR and non-TGFβR dependent processes involving mural cells and derived mesenchymal stem cells. It also offers a cautionary note on the potential deleterious, pro-fibrotic effects of exogenous MSCs once intravitreally injected into clinical patients.

     
    more » « less
  5. Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate. 
    more » « less