Wavelength tracking is a commonly used method for demodulating fiber-optic Fabry–Perot interferometric sensors due to its high resolution and straightforward implementation. We report the observation of random spurious jumps in a commonly used wavelength-tracking method based on curve fitting. These jumps were unrelated to the phase ambiguity of the spectral fringes and led to measurement errors. We analyzed the origin of the spurious jumps through Monte Carlo simulations where the fringe valley positions were obtained using polynomial curve fittings. The simulation results show that the spurious jumps arose mainly from the systematic errors of the curve-fitting function for modeling the sensor spectrum and manifested themselves by the changes in the pixel set for curve fitting. The centroid method also suffered from the spurious jumps. We proposed a modified correlation demodulation method free of the spurious jumps. In this method, the information of the measurand was obtained through the correlation between the measured sensor spectral frames and a sufficiently large number of calibrated frames of the sensor over the measurement range. The simulation and experimental results show that the modified correlation method was free of the spurious jumps encountered in the regular wavelength tracking. The resolution of the method was also studied and compared with the curve-fitting method.
more » « less- Award ID(s):
- 1918074
- PAR ID:
- 10304502
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 38
- Issue:
- 10
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 3039
- Size(s):
- Article No. 3039
- Sponsoring Org:
- National Science Foundation
More Like this
-
Researchers have utilized Other Test Method (OTM) 33A to quantify methane emissions from natural gas infrastructure. Historically, errors have been reported based on a population of measurements compared to known controlled releases of methane. These errors have been reported as 2σ errors of ±70%. However, little research has been performed on the minimum attainable uncertainty of any one measurement. We present two methods of uncertainty estimation. The first was the measurement uncertainty of the state-of-the-art equipment, which was determined to be ±3.8% of the estimate. This was determined from bootstrapped measurements compared to controlled releases. The second approach of uncertainty estimation was a modified Hollinger and Richardson (H&R) method which was developed for quantifying the uncertainty of eddy covariance measurements. Using a modified version of this method applied to OTM 33A measurements, it was determined that uncertainty of any given measurement was ±17%. Combining measurement uncertainty with that of stochasticity produced a total minimum uncertainty of 17.4%. Due to the current nature of stationary single-sensor measurements and the stochasticity of atmospheric data, such uncertainties will always be present. This is critical in understanding the transport of methane emissions and indirect measurements obtained from the natural gas industry.more » « less
-
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (
μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting bothμ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge ofμ a not only improved the accuracy in calculating αDBbut also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues. -
This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity (
) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently from . However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimated and simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimated , which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene–air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was to 10 times smaller than that provided using traditional methods. -
A tunable interband cascade laser sensor, based on wavelength modulation absorption spectroscopy near 3.73 µm, was developed to measure hydrogen chloride gas concentration in smoke-laden environments associated with the overhaul stages of firefighting. Wavelength selection near 2678cm−1targets the P(0,9) transition within the fundamental vibrational band of HCl, chosen for its absorption strength and isolation from CO2, H2O, and CH4, as well as proximity to absorption features of other toxicant gases of interest in firefighting applications. Both scanned-wavelength direct absorption with a Voigt lineshape-fitting routine and a wavelength modulation spectroscopy absorption method are employed to recover species concentration. The laser sensor is paired with a compact commercial off-the-shelf 1 m multipass optical gas cell modified to use polished Alloy 20 steel mirrors for increased corrosion resistance against humid and acidic gases, and it is tested by sampling effluent gases from pyrolyzing and burning solid samples of polyvinyl chloride under a radiant heating apparatus in a laboratory fume hood. The wavelength modulation spectroscopy method is demonstrated to enable measurement at the near-ppm-level within a compact form-factor and to provide insights into the thermochemical pyrolysis processes that lead to the formation of hydrogen chloride when polyvinyl chloride is exposed to radiant heating.
-
The diffusion and reorganization of phospholipids and membrane-associated proteins are fundamental for cellular function. Fluorescence cross-correlation spectroscopy (FCCS) measures diffusion and molecular interactions at nanomolar concentration in biological systems. We have developed an economical method to simultaneously monitor diffusion and complexation with the use of super-continuum laser and spectral deconvolution from a single detector. Customizable excitation wavelengths were chosen from the wide-band source and spectral fitting of the emitted light revealed the interactions for up to four chromatically overlapping fluorophores simultaneously. This method was applied to perform four-color FCCS that we demonstrated with polystyrene nanoparticles, lipid vesicles, and membrane-bound molecules. Up to four individually customizable excitation channels were selected from the broad-spectrum fiber laser to excite the diffusers within a diffraction-limited spot. The fluorescence emission passed through a cleanup filter and a dispersive prism prior to being collected by a sCMOS or EMCCD camera with up to 1.8 kHz frame rates. The emission intensity versus time of each fluorophore was extracted through a linear least-square fitting of each camera frame and temporally correlated via custom software. Auto- and cross-correlation functions enabled the measurement of the diffusion rates and binding partners. We have measured the induced aggregation of nanobeads and lipid vesicles in solution upon increasing the buffer salinity. Because of the adaptability of investigating four fluorophores simultaneously with a cost-effective method, this technique will have wide application for examining macromolecular complex formation in model and living systems.