Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (
Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950–1970 and 2080–2100, we explored potential alterations to each group’s growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our data suggest phytoplankton functional types may be characterized by different temperature coefficients (Q10), growth maxima thermal dependencies, and thermal ranges which would drive dissimilar responses to each degree of temperature change. These differences, when applied in response to global simulations of future temperature, result in taxon-specific projections of growth and geographic distribution, with low-latitude coccolithophores facing considerable decreases and cyanobacteria substantial increases in growth rates. These results suggest that the singular effect of changing temperature may alter phytoplankton global community structure, owing to the significant variability in thermal response between phytoplankton functional types.
more » « less- PAR ID:
- 10304682
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ max) and temperature coefficients (Q 10; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well‐documented methods, PFTs were either assumed to have (1) the sameμ maxand the sameQ 10(as in to Eppley, 1972), (2) a uniqueμ maxbut the sameQ 10(similar to Kremer et al., 2017), or (3) a uniqueμ maxand a uniqueQ 10(following Anderson et al., 2021). These trait values were then implemented within the Massachusetts Institute of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT under a control and climate change scenario. Our results suggest that applying aμ maxandQ 10universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton communities, which lack diatoms globally. Additionally, we find that accounting for differences in theQ 10between PFTs can significantly impact each PFT's competitive ability, especially at high latitudes, leading to altered modeled phytoplankton community structures in our control and climate change simulations. This then impacts estimates of biogeochemical processes, with, for example, estimates of export production varying by ~10% in the Southern Ocean depending on the parameterization. Our results indicate that the diversity of thermal response traits in phytoplankton not only shape community composition in the historical and future, warmer ocean, but that these traits have significant feedbacks on global biogeochemical cycles. -
Abstract Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.
-
The CO2 content of Earth's atmosphere is rapidly increasing due to human consumption of fossil fuels. Models based on short-term culture experiments predict that major changes will occur in marine phytoplankton communities in the future ocean, but these models rarely consider how the evolutionary potential of phytoplankton or interactions within marine microbial communities may influence these changes. Here we experimentally evolved representatives of four phytoplankton functional types (silicifiers, calcifiers, coastal cyanobacteria, and oligotrophic cyanobacteria) in co-culture with a heterotrophic bacterium, Alteromonas, under either present-day or predicted future pCO2 conditions. The data and analysis code in this dataset show that the growth rates of cyanobacteria generally increased under both conditions, and the growth defects observed in ancestral Prochlorococcus cultures at elevated pCO2 and in axenic culture were diminished after evolution. Evolved Alteromonas were also poorer "helpers" for Prochlorococcus, supporting the assertion that the interaction between Prochlorococcus and heterotrophic bacteria is not a true mutualism but rather a competitive interaction stabilized by Black Queen processes. This work provides new insights on how phytoplankton will respond to anthropogenic change and on the evolutionary mechanisms governing the structure and function of marine microbial communities.more » « less
-
Moisander, Pia (Ed.)Abstract Environmental factors that interact with increasing temperature under the ongoing global warming are an urgent issue determining marine phytoplankton’s performance. Previous studies showed that nutrient limitation alters phytoplankton responses to temperature and may lower their temperature optima (Topt), making them more susceptible to high temperatures. The generality of this relationship is unknown, as very few species were tested. Here we investigated how growth rate depended on temperature at two contrasting nitrogen concentrations in six marine diatoms isolated from different thermal environments, including the tropics. Low nitrate had a significant effect on thermal performance in five of the six species. The effect size was larger around the optimum temperature for growth, resulting in flattened thermal performance curves but no shift in Topt. While that trend is independent of the thermal regime from which each species was isolated, the implications for the phytoplankton response to global warming may be region dependent.more » « less
-
Abstract Anthropogenic CO2emissions are inundating the upper ocean, acidifying the water, and altering the habitat for marine phytoplankton. These changes are thought to be particularly influential for calcifying phytoplankton, namely, coccolithophores. Coccolithophores are widespread and account for a substantial portion of open ocean calcification; changes in their abundance, distribution, or level of calcification could have far‐reaching ecological and biogeochemical impacts. Here, we isolate the effects of increasing CO2on coccolithophores using an explicit coccolithophore phytoplankton functional type parameterization in the Community Earth System Model. Coccolithophore growth and calcification are sensitive to changing aqueous CO2. While holding circulation constant, we demonstrate that increasing CO2concentrations cause coccolithophores in most areas to decrease calcium carbonate production relative to growth. However, several oceanic regions show large increases in calcification, such the North Atlantic, Western Pacific, and parts of the Southern Ocean, due to an alleviation of carbon limitation for coccolithophore growth. Global annual calcification is 6% higher under present‐day CO2levels relative to preindustrial CO2(1.5 compared to 1.4 Pg C/year). However, under 900 μatm CO2, global annual calcification is 11% lower than under preindustrial CO2levels (1.2 Pg C/year). Large portions of the ocean show greatly decreased coccolithophore calcification relative to growth, resulting in significant regional carbon export and air‐sea CO2exchange feedbacks. Our study implies that coccolithophores become more abundant but less calcified as CO2increases with a tipping point in global calcification (changing from increasing to decreasing calcification relative to preindustrial) at approximately ∼600 μatm CO2.