skip to main content

Title: Thermal performance of marine diatoms under contrasting nitrate availability
Abstract Environmental factors that interact with increasing temperature under the ongoing global warming are an urgent issue determining marine phytoplankton’s performance. Previous studies showed that nutrient limitation alters phytoplankton responses to temperature and may lower their temperature optima (Topt), making them more susceptible to high temperatures. The generality of this relationship is unknown, as very few species were tested. Here we investigated how growth rate depended on temperature at two contrasting nitrogen concentrations in six marine diatoms isolated from different thermal environments, including the tropics. Low nitrate had a significant effect on thermal performance in five of the six species. The effect size was larger around the optimum temperature for growth, resulting in flattened thermal performance curves but no shift in Topt. While that trend is independent of the thermal regime from which each species was isolated, the implications for the phytoplankton response to global warming may be region dependent.  more » « less
Award ID(s):
Author(s) / Creator(s):
Moisander, Pia
Date Published:
Journal Name:
Journal of Plankton Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950–1970 and 2080–2100, we explored potential alterations to each group’s growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our data suggest phytoplankton functional types may be characterized by different temperature coefficients (Q10), growth maxima thermal dependencies, and thermal ranges which would drive dissimilar responses to each degree of temperature change. These differences, when applied in response to global simulations of future temperature, result in taxon-specific projections of growth and geographic distribution, with low-latitude coccolithophores facing considerable decreases and cyanobacteria substantial increases in growth rates. These results suggest that the singular effect of changing temperature may alter phytoplankton global community structure, owing to the significant variability in thermal response between phytoplankton functional types.

    more » « less
  2. null (Ed.)
    Abstract. The elemental stoichiometry of marine phytoplankton plays a critical role in global biogeochemical cycles through its impact on nutrient cycling, secondary production, and carbon export. Although extensive laboratory experiments have been carried out over the years to assess the influence of different environmental drivers on the elemental composition of phytoplankton, a comprehensive quantitative assessment of the processes is still lacking. Here, we synthesized the responses of P:C and N:C ratios of marine phytoplankton to five major drivers (inorganic phosphorus, inorganic nitrogen, inorganic iron, irradiance, and temperature) by a meta-analysis of experimental data across 366 experiments from 104 journal articles. Our results show that the response of these ratios to changes in macronutrients is consistent across all the studies, where the increase in nutrient availability is positively related to changes in P:C and N:C ratios. We found that eukaryotic phytoplankton are more sensitive to the changes in macronutrients compared to prokaryotes, possibly due to their larger cell size and their abilities to regulate their gene expression patterns quickly. The effect of irradiance was significant and constant across all studies, where an increase in irradiance decreased both P:C and N:C. The P:C ratio decreased significantly with warming, but the response to temperature changes was mixed depending on the culture growth mode and the growth phase at the time of harvest. Along with other oceanographic conditions of the subtropical gyres (e.g., low macronutrient availability), the elevated temperature may explain why P:C is consistently low in subtropical oceans. Iron addition did not systematically change either P:C or N:C. Overall, our findings highlight the high stoichiometric plasticity of eukaryotes and the importance of macronutrients in determining P:C and N:C ratios, which both provide us insights on how to understand and model plankton diversity and productivity. 
    more » « less
  3. Abstract

    Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0–75 mg L−1), temperature (19–27°C), and pH (6.3–7.3) on the growth rate of the algal speciesScenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high‐risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust‐induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.

    more » « less
  4. The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacteriumSynechococcusisolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.

    more » « less
  5. Anthropogenic warming and natural climate variability affect global patterns of seawater temperature and marine primary productivity and affect organism survival, growth, and physiology. Mussels are ecosystem engineers that utilize byssal thread structures to attach to hard substrate, a strategy key to survival in wave-swept rocky shore environments. Byssal thread production varies according to season and environmental conditions, and temperature and food availability may influence the production of these structures by affecting energy limitation. Mytilus trossulus and M. galloprovincialis are congeneric mussel species in the Northeast Pacific with cold- and warm-adapted thermal tolerances, respectively. First, we hypothesized that temperature has opposing effects on growth rates of the 2 species. Second, we hypothesized that either (1) byssal thread production is positively correlated with growth rate (the ‘production’ hypothesis), or (2) there is a trade-off between growth and byssal thread production, and resources are allocated first to byssal thread production rather than growth. Under this ‘trade-off’ hypothesis, we predicted no relationship between growth rate and byssal thread production. We manipulated seawater temperature and food availability and quantified mussel performance in terms of survival, growth, and byssus attachment. Across all treatment combinations, we found that M. galloprovincialis had positive shell and tissue growth and M. trossulus had minimal shell growth and a loss in tissue mass. Temperature had opposing effects on each species; temperature increased shell growth of M. galloprovincialis but increased tissue loss of M. trossulus . Temperature did not affect byssal thread production, and there was no significant relationship between byssal thread quality or quantity and shell or tissue growth across the temperature and food gradient for either species. Our results suggest that energy allocation is prioritized towards byssal thread production over growth. 
    more » « less