skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Software Training in HEP
Abstract The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP.  more » « less
Award ID(s):
1829729 1836650 1829707
PAR ID:
10304864
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Computing and Software for Big Science
Volume:
5
Issue:
1
ISSN:
2510-2036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program serves individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP 
    more » « less
  2. null (Ed.)
    Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program serves individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP 
    more » « less
  3. This article reviews the notion of a Sustainability Mindset in comparison to sustainability competencies in the context of a study of a first year cohort of students beginning a minor in Sustainability Engineering at the University of Puerto Rico, Mayagüez. A framework of Knowledge (K), Skills (S), Attitudes (A), Behaviors (B), and Attitudes (A) is adopted to capture the students' developing mindsets broadly the context of Sustainability. A detailed open-form survey was administered after the first semester and was completed by 9/11 participants. Results show mature growth in the domain of sustainability (e.g., broad knowledge of the concept of sustainability to encompass the three 'pillars' of environmental, equity, and economic factors, and deep knowledge regarding ideas such as circular economy and earth systems cycles). Further growth is also demonstrated in academic and personal development (e.g., improved study skills, time management, and research skills). Future work will endeavor to continue observing the evolution of the mindset at the KSBA level and at finer levels of detail. 
    more » « less
  4. In this article we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments. With rapidly increasing data volumes and larger collaborations the analyses and consequently, the related software, become ever more complex. This necessitates structured onboarding and training. Recognizing this, a meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyze these in an attempt to determine a set of key considerations for future HEP experiments. 
    more » « less
  5. There is a critical nationwide shortage of IT professionals as well as of scientists and engineers with high-performance computing (HPC) and big data related advanced computing skills. Simultaneously, the technology is growing in complexity and sophistication, which has led to the use of multi-disciplinary teams with members from a broad range of home domains everywhere in industry, government, and academia. Moreover, a lot of the vital team collaborations take will place virtually using a variety of software platforms now and in the future. We report here on experiences with preparing undergraduate and graduate students for these career opportunities in several contexts, from regular semester classes, an undergraduate summer research program, to an advanced graduate student CyberTraining program. All these programs are conducted fully online and leveraged concepts of flipped classrooms, recorded lectures, team-based and active learning, regular oral presentations, and more to ensure student engagement and lasting learning. 
    more » « less