Abstract The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($$p_{\textrm{T}}^{\gamma }$$ ), in Pb–Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ TeV. The photon transverse momentum range is between 10–14 and 40–140 GeV/$$c$$ , depending on the collision system and on the Pb–Pb centrality class. The result extends to lower$$p_{\textrm{T}}^{\gamma }$$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is$$|\eta ^{\gamma } | <0.67$$ . The isolation selection is based on a charged particle isolation momentum threshold$$p_{\textrm{T}}^\mathrm{iso,~ch} = 1.5$$ GeV/$$c$$ within a cone of radii$$R=0.2$$ and 0.4. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$$^{0}$$ bosons from the CMS experiment, which are all found to be in agreement.
more »
« less
Ultracold collisions of polyatomic molecules: CaOH
Abstract Ultracold collisions of the polyatomic species CaOH are considered, in internal states where the collisions should be dominated by long-range dipole–dipole interactions. The computed rate constants suggest that evaporative cooling can be quite efficient for these species, provided they start at temperatures achievable by laser cooling. The rate constants are shown to become more favorable for evaporative cooling as the electric field increases. Moreover, long-range dimer states (CaOH) are predicated to occur, having lifetimes on the order of microseconds.
more »
« less
- PAR ID:
- 10305105
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 21
- Issue:
- 10
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 103022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ at midrapidity ($$-0.96<0.04$$ in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ ,$$\textrm{D}^{+}$$ ,$$\textrm{D}_\textrm{s}^{+}$$ , and$$\mathrm {J/\psi }$$ mesons, and$$\Lambda _\textrm{c}^{+}$$ and$$\Xi _\textrm{c}^{0}$$ baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ and$$\mathrm {e^{-}p}$$ collisions. The$$p_\textrm{T}$$ -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.more » « less
-
Abstract A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic rescattering at the LHC are calculated for the$$\chi _{c1}(3872)$$ resonance, a possible tetraquark state, as well as three possible pentaquark states,$$P_c^+(4312)$$ ,$$P_c^+(4440)$$ , and$$P_c^+(4457)$$ . For the$$P_c^+$$ states, the expected cross section from$$\Lambda _b$$ decays is compared to the hadronic-rescattering production. The$$\chi _{c1}(3872)$$ cross section is compared to the fiducial$$\chi _{c1}(3872)$$ cross-section measurement by LHCb and found to contribute at a level of$${\mathcal {O}({1\%})}$$ . Finally, the expected yields of$$\mathrm {P_c^{+}}$$ production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt$$\mathrm {P_c^{+}}$$ signal from hadronic rescattering.more » « less
-
Abstract We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate yr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate is yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power erg s−1, which is consistent with the X-ray cooling luminosity ( erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.more » « less
-
Abstract The production of a pair of τ leptons via photon–photon fusion, , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of is . Constraints are set on the contributions to the anomalous magnetic moment ( ) and electric dipole moments ( ) of the τ lepton originating from potential effects of new physics on the vertex: and (95% confidence level), consistent with the standard model.more » « less
An official website of the United States government
