Two-dimensional infrared (2DIR) spectroscopy has become an established method for generating vibrational spectra in condensed phase samples composed of mixtures that yield heavily congested infrared and Raman spectra. These condensed phase 2DIR spectrometers can provide very high temporal resolution (<1 ps), but the spectral resolution is generally insufficient for resolving rotational peaks in gas phase spectra. Conventional (1D) rovibrational spectra of gas phase molecules are often plagued by severe spectral congestion, even when the sample is not a mixture. Spectral congestion can obscure the patterns in rovibrational spectra that are needed to assign peaks in the spectra. A method for generating high resolution 2DIR spectra of gas phase molecules has now been developed and tested using methane as the sample. The 2D rovibrational patterns that are recorded resemble an asterisk with a center position that provides the frequencies of both of the two coupled vibrational levels. The ability to generate easily recognizable 2D rovibrational patterns, regardless of temperature, should make the technique useful for a wide range of applications that are otherwise difficult or impossible when using conventional 1D rovibrational spectroscopy.
Because of their central importance in chemistry and biology, water molecules have been the subject of decades of intense spectroscopic investigations. Rotational spectroscopy of water vapor has yielded detailed information about the structure and dynamics of isolated water molecules, as well as water dimers and clusters. Nonlinear rotational spectroscopy in the terahertz regime has been developed recently to investigate the rotational dynamics of linear and symmetric-top molecules whose rotational energy levels are regularly spaced. However, it has not been applied to water or other lower-symmetry molecules with irregularly spaced levels. We report the use of recently developed two-dimensional (2D) terahertz rotational spectroscopy to observe high-order rotational coherences and correlations between rotational transitions that were previously unobservable. The results include two-quantum (2Q) peaks at frequencies that are shifted slightly from the sums of distinct rotational transitions on two different molecules. These results directly reveal the presence of previously unseen metastable water complexes with lifetimes of 100 ps or longer. Several such peaks observed at distinct 2Q frequencies indicate that the complexes have multiple preferred bimolecular geometries. Our results demonstrate the sensitivity of rotational correlations measured in 2D terahertz spectroscopy to molecular interactions and complexation in the gas phase.
more » « less- Award ID(s):
- 1665383
- NSF-PAR ID:
- 10305412
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 40
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2020941118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although gas phase rotational spectroscopy is a mature field for which millions of rotational spectral lines have been measured in hundreds of molecules with sub-MHz accuracy, it remains a challenge to measure these rotational spectra in excited vibrational modes with the same accuracy. Recently, it was demonstrated that virtually any rotational transition in excited vibrational modes of most molecules may be made to lase when pumped by a continuously tunable quantum cascade laser (QCL). Here, we demonstrate how an infrared QCL may be used to enhance absorption strength or induce lasing of terahertz rotational transitions in highly excited vibrational modes in order to measure their frequencies more accurately. To illustrate the concepts, we used a tunable QCL to excite v3R-branch transitions in N2O and either enhanced absorption or induced lasing on 20 v3rotational transitions, whose frequencies between 299 and 772 GHz were then measured using either heterodyne or modulation spectroscopy. The spectra were fitted to obtain the rotational constants B3and D3, which reproduce the measured spectra to within the experimental uncertainty of ± 5 kHz. We then show how this technique may be generalized by estimating the threshold power to make any rotational transition lase in any N2O vibrational mode.
-
Some reactions produce extremely hot nascent-products which nevertheless can form sufficiently long-lived van der Waals (vdW) complexes—with atoms or molecules from a bath gas—as to be observed via microwave spectroscopy. Theoretical calculations of such unbound resonance-states can be much more challenging than ordinary bound-state calculations depending on the approach employed. One encounters not only the floppy, and perhaps multi-welled potential energy surface (PES) characteristic of vdWs complexes, but in addition must contend with excitation of the intramolecular modes and its corresponding influence on the PES. Straightforward computation of the (resonance) rovibrational levels of interest, involves the added complication of the unbound nature of the wavefunction, often treated with techniques such as introducing a complex absorbing potential. Here, we have demonstrated that a simplified approach of making a series of vibrationally effective PESs for the intermolecular coordinates—one for each reaction product vibrational quantum number of interest—can produce vdW levels for the complex with spectroscopic accuracy. This requires constructing a series of appropriately weighted lower-dimensional PESs for which we use our freely available PES-fitting code AUTOSURF. The applications of this study are the Ar–CS and Ar–SiS complexes, which are isovalent to Ar–CO and Ar–SiO, the latter of which we considered in a previously reported study. Using a series of vibrationally effective PESs, rovibrational levels and predicted microwave transition frequencies for both complexes were computed variationally. A series of shifting rotational transition frequencies were also computed as a function of the diatom vibrational quantum number. The predicted transitions were used to guide and inform an experimental effort to make complementary observations. Comparisons are given for the transitions that are within the range of the spectrometer and were successfully recorded. Calculations of the rovibrational level pattern agree to within 0.2 % with experimental measurements.more » « less
-
Terahertz vibrational spectroscopy has emerged as a powerful spectroscopic technique, providing valuable information regarding long-range interactions – and associated collective dynamics – occurring in solids. However, the terahertz sciences are relatively nascent, and there have been significant advances over the last several decades that have profoundly influenced the interpretation and assignment of experimental terahertz spectra. Specifically, because there do not exist any functional group or material-specific terahertz transitions, it is not possible to interpret experimental spectra without additional analysis, specifically, computational simulations. Over the years simulations utilizing periodic boundary conditions have proven to be most successful for reproducing experimental terahertz dynamics, due to the ability of the calculations to accurately take long-range forces into account. On the other hand, there are numerous reports in the literature that utilize gas phase cluster geometries, to varying levels of apparent success. This perspective will provide a concise introduction into the terahertz sciences, specifically terahertz spectroscopy, followed by an evaluation of gas phase and periodic simulations for the assignment of crystalline terahertz spectra, highlighting potential pitfalls and good practice for future endeavors.more » « less
-
DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range. In response, we have employed a high-precision megahertz to terahertz dielectric spectrometer, assisted by molecular dynamics simulations, to investigate the dynamics of water molecules within the hydration shells of DNA as well as the collective vibrational motions of hydrated DNA, which are vital to DNA conformation and functionality. Our results reveal that the dynamics of water molecules in a DNA solution is heterogeneous, exhibiting a hierarchy of four distinct relaxation times ranging from ~8 ps to 1 ns, and the hydration structure of a DNA chain can extend to as far as ~18 A from its surface. The low-frequency collective vibrational modes of hydrated DNA have been identified and found to be sensitive to environmental conditions including temperature and hydration level. The results reveal critical information on hydrated DNA dynamics and DNA-water interfaces, which impact the biochemical functions and reactivity of DNA.more » « less