skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear rotational spectroscopy reveals many-body interactions in water molecules
Because of their central importance in chemistry and biology, water molecules have been the subject of decades of intense spectroscopic investigations. Rotational spectroscopy of water vapor has yielded detailed information about the structure and dynamics of isolated water molecules, as well as water dimers and clusters. Nonlinear rotational spectroscopy in the terahertz regime has been developed recently to investigate the rotational dynamics of linear and symmetric-top molecules whose rotational energy levels are regularly spaced. However, it has not been applied to water or other lower-symmetry molecules with irregularly spaced levels. We report the use of recently developed two-dimensional (2D) terahertz rotational spectroscopy to observe high-order rotational coherences and correlations between rotational transitions that were previously unobservable. The results include two-quantum (2Q) peaks at frequencies that are shifted slightly from the sums of distinct rotational transitions on two different molecules. These results directly reveal the presence of previously unseen metastable water complexes with lifetimes of 100 ps or longer. Several such peaks observed at distinct 2Q frequencies indicate that the complexes have multiple preferred bimolecular geometries. Our results demonstrate the sensitivity of rotational correlations measured in 2D terahertz spectroscopy to molecular interactions and complexation in the gas phase.  more » « less
Award ID(s):
1665383
PAR ID:
10305412
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
40
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2020941118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used to extensively study molecular systems, providing unique information such as coherence sensitivity, molecular configurations, enhanced resolution, and correlated states and their dynamics. However, the analogy of interfacial 2D spectroscopy has fallen behind. Our recent work presented interface-specific 2D-EV spectroscopy (i2D-EV). In this work, we develop interface-specific two-dimensional vibrational–electronic spectroscopy (i2D-VE). The fourth-order spectroscopy is based on a Mach–Zehnder IR interferometer that accurately controls the time delay of an IR pump pulse pair for vibrational transitions, followed by broadband interface second-harmonic generation to probe electronic transitions. We demonstrate step-by-step how a fourth-order i2D-VE spectrum of AP3 molecules at the air/water interface was collected and analyzed. The line shape and signatures of i2D-VE peaks reveal solvent correlations and the spectral nature of vibronic couplings. Together, i2D-VE and i2D-EV spectroscopy provide coupling of different behaviors of the vibrational ground state or excited states with electronic states of molecules at interfaces and surfaces. The methodology presented here could also probe dynamic couplings of electronic and vibrational motions at interfaces and surfaces, extending the usefulness of the rich data that are obtained. 
    more » « less
  2. Two-dimensional infrared (2DIR) spectroscopy has become an established method for generating vibrational spectra in condensed phase samples composed of mixtures that yield heavily congested infrared and Raman spectra. These condensed phase 2DIR spectrometers can provide very high temporal resolution (<1 ps), but the spectral resolution is generally insufficient for resolving rotational peaks in gas phase spectra. Conventional (1D) rovibrational spectra of gas phase molecules are often plagued by severe spectral congestion, even when the sample is not a mixture. Spectral congestion can obscure the patterns in rovibrational spectra that are needed to assign peaks in the spectra. A method for generating high resolution 2DIR spectra of gas phase molecules has now been developed and tested using methane as the sample. The 2D rovibrational patterns that are recorded resemble an asterisk with a center position that provides the frequencies of both of the two coupled vibrational levels. The ability to generate easily recognizable 2D rovibrational patterns, regardless of temperature, should make the technique useful for a wide range of applications that are otherwise difficult or impossible when using conventional 1D rovibrational spectroscopy. 
    more » « less
  3. Some reactions produce extremely hot nascent-products which nevertheless can form sufficiently long-lived van der Waals (vdW) complexes—with atoms or molecules from a bath gas—as to be observed via microwave spectroscopy. Theoretical calculations of such unbound resonance-states can be much more challenging than ordinary bound-state calculations depending on the approach employed. One encounters not only the floppy, and perhaps multi-welled potential energy surface (PES) characteristic of vdWs complexes, but in addition must contend with excitation of the intramolecular modes and its corresponding influence on the PES. Straightforward computation of the (resonance) rovibrational levels of interest, involves the added complication of the unbound nature of the wavefunction, often treated with techniques such as introducing a complex absorbing potential. Here, we have demonstrated that a simplified approach of making a series of vibrationally effective PESs for the intermolecular coordinates—one for each reaction product vibrational quantum number of interest—can produce vdW levels for the complex with spectroscopic accuracy. This requires constructing a series of appropriately weighted lower-dimensional PESs for which we use our freely available PES-fitting code AUTOSURF. The applications of this study are the Ar–CS and Ar–SiS complexes, which are isovalent to Ar–CO and Ar–SiO, the latter of which we considered in a previously reported study. Using a series of vibrationally effective PESs, rovibrational levels and predicted microwave transition frequencies for both complexes were computed variationally. A series of shifting rotational transition frequencies were also computed as a function of the diatom vibrational quantum number. The predicted transitions were used to guide and inform an experimental effort to make complementary observations. Comparisons are given for the transitions that are within the range of the spectrometer and were successfully recorded. Calculations of the rovibrational level pattern agree to within 0.2 % with experimental measurements. 
    more » « less
  4. Measuring terahertz waveforms in terahertz spectroscopy often relies on electro-optic sampling employing a ZnTe crystal. Although the nonlinearities in such zincblende semiconductors induced by intense terahertz pulses have been studied at optical frequencies, a quantitative study of nonlinearities in the terahertz regime has not been reported. In this work, we investigate the nonlinear response of ZnTe in the terahertz frequency region utilizing time-resolved terahertz-pump terahertz-probe spectroscopy. We find that the interaction of two co-propagating terahertz pulses in ZnTe leads to a nonlinear polarization change which modifies the electro-optic response of the medium at terahertz frequencies. We present a model for this polarization that showcases the second-order nonlinear behavior. We also determine the magnitude of the third-order susceptibility in ZnTe at terahertz frequencies,χ(3)THz). These results clarify the interactions in ZnTe at terahertz frequencies, with implications for measurements of intense terahertz fields using electro-optic sampling. 
    more » « less
  5. Terahertz vibrational spectroscopy has emerged as a powerful spectroscopic technique, providing valuable information regarding long-range interactions – and associated collective dynamics – occurring in solids. However, the terahertz sciences are relatively nascent, and there have been significant advances over the last several decades that have profoundly influenced the interpretation and assignment of experimental terahertz spectra. Specifically, because there do not exist any functional group or material-specific terahertz transitions, it is not possible to interpret experimental spectra without additional analysis, specifically, computational simulations. Over the years simulations utilizing periodic boundary conditions have proven to be most successful for reproducing experimental terahertz dynamics, due to the ability of the calculations to accurately take long-range forces into account. On the other hand, there are numerous reports in the literature that utilize gas phase cluster geometries, to varying levels of apparent success. This perspective will provide a concise introduction into the terahertz sciences, specifically terahertz spectroscopy, followed by an evaluation of gas phase and periodic simulations for the assignment of crystalline terahertz spectra, highlighting potential pitfalls and good practice for future endeavors. 
    more » « less