skip to main content


Title: Pore-scale experimental investigation of oil recovery enhancement in oil-wet carbonates using carbonaceous nanofluids
Abstract

This study investigates the pore-scale displacement mechanisms of crude oil in aged carbonate rocks using novel engineered carbon nanosheets (E-CNS) derived from sub-bituminous coal. The nanosheets, synthesized by a simple top-down technique, were stable in brine without any additional chemicals. Owing to their amphiphilic nature and nano-size, they exhibited dual properties of surfactants and nanoparticles and reduced the oil/brine interfacial tension (IFT) from 14.6 to 5.5 mN/m. X-ray micro-computed tomography coupled with miniature core-flooding was used to evaluate their ability to enhance oil recovery. Pore-scale displacement mechanisms were investigated using in-situ contact angle measurements, oil ganglia distribution analysis, and three-dimensional visualization of fluid occupancy maps in pores of different sizes. Analysis of these maps at the end of various flooding stages revealed that the nanofluid invaded into medium and small pores that were inaccessible to base brine. IFT reduction was identified as the main displacement mechanism responsible for oil recovery during 1 to 8 pore volumes (PVs) of nanofluid injection. Subsequently, wettability alteration was the dominant mechanism during the injection of 8 and 32 PVs, decreasing the average contact angle from 134° (oil wet) to 85° (neutral wet). In-situ saturation data reveals that flooding with only 0.1 wt% of E-CNS in brine resulted in incremental oil production of 20%, highlighting the significant potential of this nanofluid as a recovery agent.

 
more » « less
NSF-PAR ID:
10305472
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Micro‐gel particle suspensions (MGPS) have been proposed for enhanced oil recovery (EOR) in reservoirs with harsh conditions in recent years, yet the mechanisms are still not clear because of the complex property of MGPS and the complex geometry of rocks. In this paper, the micro‐gel particle‐based flooding has been studied by our microfluidic experiments on both bi‐permeability micromodels and reservoir‐on‐a‐chip. A method for reservoir‐on‐a‐chip design has been proposed based on QSGS (quartet structure generation set) to ensure that the flow geometry on chip owns the most important statistical features of real rock microstructures. In the micromodel experiments with heterogeneous microstructures, even if the MGPS has the same macroscopic rheology as the hydrolyzed polyacrylamides (HPAM) solution for flooding, MGPS may lead to significant fluctuations of pressure field caused by the nonuniform concentration distribution of particles. In the reservoir‐on‐a‐chip experiments, clustered oil trapped in the swept pores can be recovered by MGPS because of pressure fluctuation, which hardly happens in the HPAM flooding. Compared with the water flooding, the HPAM solution flooding leads to approximately 17% incremental oil recovery, while the MGPS results in approximately 49.8% incremental oil recovery in the laboratory.

     
    more » « less
  2. The formation of precipitates (scales) during reinjection limits the reuse of oil and gas production water (produced water) for additional oil recovery. Selective removal strategies that target Ba and Sr, the primary scale-forming cations, would limit produced water treatment costs, reduce waste generation, and increase produced water reuse. A novel treatment technique for targeted Ba and Sr removal, complexation with polyelectrolyte polymers, is compared with chemical precipitation (sulfate addition and precipitative softening) for the removal of Ba and Sr from Kansas oil field brines. Four polymers were examined for cation removal, both with and without ultrafiltration: poly-vinyl sulfonate (PVS), poly(4-styrenesulfonate) (PSS), polyacrylic acid (PAA), and poly(4-styrenesulfonic acid- co -maleic acid) (PSSM). PSSM and PSS were effective for Ba and Sr removal from the lower salinity brine (TDS of 31 000 mg L −1 ), but exhibited limited Sr removal in the absence of Ba in the high salinity brine (TDS of 92 000 mg l −1 ). Similar results were achieved in both brines using sulfate addition. PSSM used in conjunction with ultrafiltration removed >99% of initial Sr and Ba from the lower salinity brine, while removing only 65% and 78% of Mg and Ca, respectively. These results compare favorably to precipitative softening, which removed >90% of all divalent cations from the same brine but was less selective for Ba and Sr. PAA plus ultrafiltration removed 58% of Sr (and 68% of Ca) from the high-salinity brine at pH 9. While increased Sr removal can be achieved by polymer-assisted ultrafiltration, further development of this process, including methods for polymer recovery and regeneration, will be needed to improve its performance compared to precipitative softening. 
    more » « less
  3. null (Ed.)
    CO 2 -based enhanced oil recovery is widely practiced. The current understanding of its mechanisms largely focuses on bulk phenomena such as achieving miscibility or reducing oil density and viscosity. Using molecular dynamics simulations, we show that CO 2 adsorption on calcite surfaces impedes decane transport at moderate adsorption density but enhances decane transport when CO 2 adsorption approaches surface saturation. These effects change the decane permeability through 8 nm-wide pores by up to 30% and become negligible only in pores wider than several tens of nanometers. The strongly nonlinear, non-monotonic dependence of decane permeability on CO 2 adsorption is traced to CO 2 's modulation of interfacial structure of long-chain hydrocarbons, and thus the slippage between interfacial hydrocarbon layers and between interfacial CO 2 and hydrocarbon layers. These results highlight a new and critical role of CO 2 -induced interfacial effects in influencing oil recovery from unconventional reservoirs, whose porosity is dominated by nanopores. 
    more » « less
  4. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs. 
    more » « less
  5. Summary Asphaltene precipitation and deposition is considered one of the prevailing issues during carbon dioxide (CO2) gas injection in gas enhanced oil recovery techniques, which leads to pore plugging, oil recovery reduction, and damaged surface and subsurface equipment. This research provides a comprehensive investigation of the effect of immiscible and miscible CO2 gas injection in nanopore shale structures on asphaltene instability in crude oil. A slimtube was used to determine the minimum miscibility pressure (MMP) of the CO2. This step is important to ensure that the immiscible and miscible conditions will be achieved during the filtration experiments. For the filtration experiments, nanocomposite filter paper membranes were used to mimic the unconventional shale pore structure, and a specially designed filtration apparatus was used to accommodate the filter paper membranes. The uniform distribution (i.e., same pore size filters) was used to illustrate the influence of the ideal shale reservoir structure and to provide an idea on how asphaltene will deposit when utilizing the heterogeneous distribution (i.e., various pore size filters) that depicts the real shale structure. The factors investigated include immiscible and miscible CO2 injection pressures, temperature, CO2 soaking time, and pore size structure heterogeneity. Visualization tests were undertaken after the filtration experiments to provide a clear picture of the asphaltene precipitation and deposition process over time. The results showed an increase in asphaltene weight precent in all experiments of the filtration tests. The severity of asphaltene aggregations was observed at a higher rate under miscible CO2 injection. It was observed that the miscible conditions have a higher impact on asphaltene instability compared to immiscible conditions. The results revealed that the asphaltene deposition was almost equal across all the paper membranes for each pressure used when using a uniform distribution. Higher asphaltene weight percent were determined on smaller pore structures of the membranes when using heterogeneous distribution. Soaking time results revealed that increasing the soaking time resulted in an increase in asphaltene weight precent, especially for 60 and 120 minutes. Visualization tests showed that after 1 hour, the asphaltene clusters started to precipitate and could be seen in the uppermost section of the test tubes and were fully deposited after 12 hours with less clusters found in the supernatant. Also, smaller pore size of filter membranes showed higher asphaltene weight percent after the visualization test. Chromatography analysis provided further evaluation on how asphaltene was reduced though the filtration experiments. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes showed the severity of pore plugging in the structure of the membranes. This research highlights the impact of CO2 injection on asphaltene instability in crude oil in nanopore structures under immiscible and miscible conditions. The findings in this research can be used for further research of asphaltene deposition under gas injection and to scale up the results for better understanding of the main factors that may influence asphaltene aggregation in real shale unconventional reservoirs. 
    more » « less