- Award ID(s):
- 1705287
- NSF-PAR ID:
- 10279664
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 40
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 23057 to 23063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology.more » « less
-
Abstract Metal–organic frameworks (MOFs) can efficiently purify hydrocarbons from CO2, but their rapid saturation, driven by preferential hydrocarbon adsorption, requires energy‐intensive adsorption–desorption processes. To address these challenges, an innovative approach is developed, enabling control over MOF flexibility through densification and defect engineering, resulting in an intriguing inverse CO2/C2 hydrocarbon selectivity. In this study, the densification process induces the shearing of the crystal lattice and contraction of pores in a defective CuBTC MOF. These changes have led to a remarkable transformation in selectivity, where the originally hydrocarbon‐selective CuBTC MOF becomes CO2‐selective. The selectivity values for densified CuBTC are significantly reversed when compared to its powder form, with notable improvements observed in CO2/C2H6(4416 vs 0.61), CO2/C2H4(15 vs 0.28), and CO2/C2H2(4 vs 0.2). The densified material shows impressive separation, regeneration, and recyclability during dynamic breakthrough experiments with complex quinary gas mixtures. Simulation studies indicate faster CO2passage through the tetragonal structure of densified CuBTC compared to C2H2. Experimental kinetic diffusion studies confirm accelerated CO2diffusion over hydrocarbons in the densified MOF, attributed to its small pore window and minimal interparticle voids. This research introduces a promising strategy for refining existing and future MOF materials, enhancing their separation performance.
-
Marine oil contamination remediation remains a worldwide challenge. Siphon action provides a spontaneous, continuous, low-cost and green route for oil recovery. However, it is still limited by the low oil recovery rate due to insufficient internal pathways for oil transport. In this paper, a graphene petal foam (GPF)-based oil skimmer is designed and fabricated by plasma-enhanced chemical vapor deposition (PECVD) for ultrafast self-pumping oil recovery from oil/water mixtures. The hierarchical structure, containing micro- and nano-channels formed by interconnected graphene networks and vertically aligned graphene petals (GPs), respectively, and micro-pores inherited from the 3D interconnected structure of Ni foam, provides multiple fast passages for oil transport. An oil recovery rate of 135.2 L m −2 h −1 is achieved in dark conditions for such oil skimmers, while the value is increased to 318.8 L m −2 h −1 under solar irradiation of 1 kW m −2 because of the excellent solar-heating effect of GPs. Quantitative analyses suggest that 68.8% of such a high oil recovery rate is contributed by the nano-channels and micro-pores, while 31.2% arises from the micro-channels. Our demonstrated GPF oil skimmers exhibit great promise for fast spontaneous and continuous oil contamination cleanup.more » « less
-
Abstract Due to their large carbon storage capacity and ability to exchange subterranean CO2with the atmosphere, soils are key components in the carbon balance in semi‐arid ecosystems. Most studies have focused on shallow (e.g., <30 cm depth) soil CO2dynamics neglecting processes in deeper soil layers where highly CO2‐enriched air can be stored or transported through soil pores and fissures. Here, we examine the relationship among variations in subterranean CO2molar fraction, volumetric water content, soil temperature and atmospheric pressure during three years within soil profiles (0.15, 0.50, and 1.50 m depths) in two semi‐arid grasslands located in southeastern Spain. We applied a wavelet coherence analysis to study the temporal variability and temporal correlation between the CO2molar fraction and its covariates (soil temperature, soil moisture and atmospheric pressure). Our results show that CO2dynamics are strongly influenced by changes in atmospheric pressure from semidiurnal, diurnal and synoptic to monthly time‐scales for all soil depths. In contrast, only weak daily dependencies were found at the surface level (0.15 m) regarding soil temperature and volumetric water content. Atmospheric pressure changes substantially influence variations in the CO2content (with daily fluctuations of up to 2000 ppm) denoting transportation through soil layers. These results provide insights into the importance of subterranean storage and non‐diffusive gas transport that could influence soil CO2efflux rates, processes that are not considered when applying the flux‐gradient approach and, which can be especially important in ecosystems with high air permeability between the unsaturated porous media and the atmosphere.
-
Abstract Porous MXene-polymer composites have gained attention due to their low density, large surface area, and high electrical conductivity, which can be used in applications such as electromagnetic interference shielding, sensing, energy storage, and catalysis. High internal phase emulsions (HIPEs) can be used to template the synthesis of porous polymer structures, and when solid particles are used as the interfacial agent, composites with pores lined with the particles can be realized. Here, we report a simple and scalable method to prepare conductive porous MXene/polyacrylamide structures via polymerization of the continuous phase in oil/water HIPEs. The HIPEs are stabilized by salt flocculated Ti 3 C 2 T x nanosheets, without the use of a co-surfactant. After polymerization, the polyHIPE structure consists of porous polymer struts and pores lined with Ti 3 C 2 T x nanosheets, as confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The pore size can be tuned by varying the Ti 3 C 2 T x concentration, and the interconnected Ti 3 C 2 T x network allows for electrical percolation at low Ti 3 C 2 T x loading; further, the electrical conductivity is stable for months indicating that in these composites, the nanosheets are stable to oxidation at ambient conditions. The polyHIPEs also exhibit rapid radio frequency heating at low power (10 °C s −1 at 1 W). This work demonstrates a simple approach to accessing electrically conductive porous MXene/polymer composites with tunable pore morphology and good oxidation stability of the nanosheets.more » « less