skip to main content

Title: Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2

Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2and WSe2gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s–3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2and WSe2.

; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The electronic exciton polaron is a hypothetical many-body quasiparticle formed by an exciton dressed with a polarized electron-hole cloud in the Fermi sea (FS). It is predicted to display rich many-body physics and unusual roton-like dispersion. Exciton polarons were recently evoked to explain the excitonic spectra of doped monolayer transition metal dichalcogenides (TMDs), but these studies are limited to the ground state. Excited-state exciton polarons can exhibit richer many-body physics due to their larger spatial extent, but detection is challenging due to their inherently weak signals. Here we observe gate-tunable exciton polarons for the 1s - 3s excitonic Rydberg series in ultraclean monolayer MoSe2 devices by optical spectroscopy. When the FS expands, we observe increasingly severe suppression and steep energy shift from low to high Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Notably, the exciton-polaron absorption and emission bands are separated with an energy gap, which increases from ground to excited state. Such peculiar characteristics are attributed to the roton-like exciton-polaron dispersion, where energy minima occur at finite momenta. The roton effect increases from ground to excited state. Such exciton-polaron Rydberg series with progressively significant many-body and roton effect shall providemore »a new platform to explore complex many-body phenomena.« less
  2. Abstract Strong optical nonlinearities play a central role in realizing quantum photonic technologies. Exciton-polaritons, which result from the hybridization of material excitations and cavity photons, are an attractive candidate to realize such nonlinearities. While the interaction between ground state excitons generates a notable optical nonlinearity, the strength of such interactions is generally not sufficient to reach the regime of quantum nonlinear optics. Excited states, however, feature enhanced interactions and therefore hold promise for accessing the quantum domain of single-photon nonlinearities. Here we demonstrate the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe 2 ) embedded in a microcavity. The realized excited-state polaritons exhibit an enhanced nonlinear response ∼ $${g}_{{pol}-{pol}}^{2s} \sim 46.4\pm 13.9\,\mu {eV}\mu {m}^{2}$$ g p o l − p o l 2 s ~ 46.4 ± 13.9 μ e V μ m 2 which is ∼4.6 times that for the ground-state exciton. The demonstration of enhanced nonlinear response from excited exciton-polaritons presents the potential of generating strong exciton-polariton interactions, a necessary building block for solid-state quantum photonic technologies.
  3. Abstract

    Moiré coupling in transition metal dichalcogenides (TMDCs) superlattices introduces flat minibands that enable strong electronic correlation and fascinating correlated states, and it also modifies the strong Coulomb-interaction-driven excitons and gives rise to moiré excitons. Here, we introduce the layer degree of freedom to the WSe2/WS2moiré superlattice by changing WSe2from monolayer to bilayer and trilayer. We observe systematic changes of optical spectra of the moiré excitons, which directly confirm the highly interfacial nature of moiré coupling at the WSe2/WS2interface. In addition, the energy resonances of moiré excitons are strongly modified, with their separation significantly increased in multilayer WSe2/monolayer WS2moiré superlattice. The additional WSe2layers also modulate the strong electronic correlation strength, evidenced by the reduced Mott transition temperature with added WSe2layer(s). The layer dependence of both moiré excitons and correlated electronic states can be well described by our theoretical model. Our study presents a new method to tune the strong electronic correlation and moiré exciton bands in the TMDCs moiré superlattices, ushering in an exciting platform to engineer quantum phenomena stemming from strong correlation and Coulomb interaction.

  4. Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe,i.e., ΔT/Tor ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2(1L-MoS2) by measuring ΔT/Tand ΔR/Rwith different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitudemore »of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

    « less
  5. The optical spectra of transition metal dichalcogenide monolayers are dominated by excitons and trions. Here, we establish the dependence of these optical transitions on the disorder from hyperspectral imaging of h-BN encapsulated monolayer MoSe2. While both exciton and trion energies vary spatially, these two quantities are almost perfectly correlated, with spatial variation in the trion binding energy of only ∼0.18 meV. In contrast, variation in the energy splitting between the two lowest energy exciton states is one order of magnitude larger at ∼1.7 meV. Statistical analysis and theoretical modeling reveal that disorder results from dielectric and bandgap fluctuations, not electrostatic fluctuations. Our results shed light on disorder in high quality TMDC monolayers, its impact on optical transitions, and the many-body nature of excitons and trions.