skip to main content


Title: Transport of Interstellar Neutral Helium throughout the Heliosphere
Abstract

A number of physical processes accompanying the solar wind interaction with the local interstellar medium (LISM) are governed by charge exchange between ions and neutral atoms of interstellar origin. A new, 3D, MHD-plasma/kinetic-neutral model is developed that self-consistently includes both neutral hydrogen and helium atoms, and their feedback on the plasma, through charge exchange and photoionization. Focusing on the transport of interstellar neutral helium, quantitative estimates are provided for bulk properties, deflection angles, and velocity distribution functions (VDFs) along the upwind direction. It is shown that the average deflection of secondary He atoms born in the outer heliosheath (OHS) from their original direction in the LISM is ∼12° in front of the heliopause, and occurs in the directions parallel to the plane formed by the velocity and magnetic field vectors in the unperturbed LISM. While these properties are consistent with Interstellar Boundary Explorer observations of the “warm breeze,” we show that charge exchange in the OHS leads to remarkable deviations of their VDF from the Maxwellian distribution. He atom filtration in the OHS results in a significant temperature anisotropy and VDF asymmetries, even for the primary helium atoms that experience no charge exchange at all. This is an entirely kinetic phenomenon that shows that primary He atoms observed at 1 au have distributions substantially different from those in the LISM.

 
more » « less
Award ID(s):
2031611
PAR ID:
10306315
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
921
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L24
Size(s):
Article No. L24
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction of the solar wind with the local interstellar medium (LISM) spans a wide range of interacting particle populations, energies, and scales. Sophisticated models are required to capture the global picture, interpret near-Earth observations, and ultimately understand the properties of the LISM at distances of thousands of AUs, where the medium is presumed to be unperturbed by this interaction. We present a new extension of our MHD-plasma/kinetic-neutral heliospheric model, implemented within the Multi-Scale Fluid- Kinetic Simulation Suite (MS-FLUKSS). The new model treats singly and doubly charged helium ions, pickup protons, and electrons as separate, self-consistently coupled populations, interacting through six charge exchange processes and photoionization with kinetically treated neutral hydrogen and helium atoms. In this paper, we provide detailed information on the implementation, including new fits for the charge-exchange cross sections, and demonstrate the functionality and performance of the new code 
    more » « less
  2. Abstract

    We present a new three-dimensional, MHD-plasma/kinetic-neutrals model of the solar wind (SW) interaction with the local interstellar medium (LISM), which self-consistently includes neutral hydrogen and helium atoms. This new model also treats electrons as a separate fluid and includes the effect of Coulomb collisions. While the properties of electrons in the distant SW and in the LISM are mostly unknown due to the lack of in situ observations, a common assumption for any global, single-ion model is to assume that electrons have the temperature of the ion mixture, which includes pickup ions. In the new model, electrons in the SW are colder, which results in a better agreement with New Horizons observations in the supersonic SW. In the LISM, however, ions and electrons are almost in thermal equilibrium. As for the plasma mixture, the major differences between the models are in the inner heliosheath, where the new model predicts a charge-exchange-driven cooling and a decrease of the heliosheath thickness. The filtration of interstellar neutral atoms at the heliospheric interface is discussed. The new model predicts an increase in the H density by ∼2% at 1 au. However, the fraction of pristine H atoms decreases by ∼12%, while the density of atoms born in the outer and inner heliosheath increases by 5% and ∼35%, respectively. While at 1 au the density of He atoms remains unchanged, the contribution from the “warm breeze” increases by ∼3%.

     
    more » « less
  3. Abstract The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. Voyager 1 and 2 spacecraft perform in situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. We discuss observational data and numerical simulations that shed light onto the mutual influence of the SW and LISM. Physical phenomena accompanying the SW–LISM interaction are discussed, including the coupling of the heliospheric and interstellar magnetic field at the heliopause. 
    more » « less
  4. The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. New Horizons provides us with unique measurements of pickup ions in the SW region where they are thermodynamically dominant. Voyager 1 and 2 spacecraft perform in-situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. The Interstellar Boundary Explorer (IBEX) makes it possible identify the 3-D structure of the heliospheric interface. We outline the main challenges in the physics of the SW–LISM interaction. The physical processes that require a focused attention of the heliospheric community are discussed from the theoretical perspective and space missions necessary for their investigation. We emphasize the importance of data-driven simulations, which are necessary for the interpretation and explanation of spacecraft data. 
    more » « less
  5. Abstract

    We introduce the first solar-cycle simulations from our 3D, global MHD-plasma/kinetic-neutrals model, where both hydrogen and helium atoms are treated kinetically, while electrons and helium ions are described as individual fluids. Using Voyager/PWS observations of electron density up to 160 au from the Sun for validation of several different global models, we conclude that the current estimates for the proton density in the local interstellar medium (LISM) need a revision. Our findings indicate that the commonly accepted value of 0.054 cm−3may need to be increased to values exceeding 0.07 cm−3. We also show how different assumptions regarding the proton velocity distribution function in the outer heliosheath may affect the global solution. A new feature revealed by our simulations is that the helium ion flow may be significantly compressed and heated in the heliotail at heliocentric distances exceeding ∼400 au. Additionally, we identify a Kelvin–Helmholtz instability at the boundary of the slow and fast solar wind in the inner heliosheath, which acts as a driver of turbulence in the heliotail. These results are crucial for inferring the properties of the LISM and of the global heliosphere structure.

     
    more » « less