Abstract The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. Voyager 1 and 2 spacecraft perform in situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. We discuss observational data and numerical simulations that shed light onto the mutual influence of the SW and LISM. Physical phenomena accompanying the SW–LISM interaction are discussed, including the coupling of the heliospheric and interstellar magnetic field at the heliopause.
more »
« less
Heliosphere in the Local Interstellar Medium
The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. New Horizons provides us with unique measurements of pickup ions in the SW region where they are thermodynamically dominant. Voyager 1 and 2 spacecraft perform in-situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. The Interstellar Boundary Explorer (IBEX) makes it possible identify the 3-D structure of the heliospheric interface. We outline the main challenges in the physics of the SW–LISM interaction. The physical processes that require a focused attention of the heliospheric community are discussed from the theoretical perspective and space missions necessary for their investigation. We emphasize the importance of data-driven simulations, which are necessary for the interpretation and explanation of spacecraft data.
more »
« less
- Award ID(s):
- 2010450
- PAR ID:
- 10520747
- Publisher / Repository:
- AAS
- Date Published:
- Journal Name:
- Bulletin of the AAS
- Volume:
- 55
- Issue:
- 3
- ISSN:
- 0002-7537
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.more » « less
-
Our three-dimensional, time-dependent, multi-fluid model has been used to investigate the solar wind (SW)–local interstellar medium (LISM) interaction with pickup ions (PUIs) treated as a separate fluid. A non-zero, but fixed, angle between the Sun’s magnetic and rotation axis is adopted. The flow of the plasma mixture (thermal SW protons, PUIs, and electrons), is described by the system of ideal magnetohydrodynamic equations with the source terms responsible for charge exchange between ions and neutral atoms. Different populations of neutral atoms are governed by the individual sets of the Euler equations. As the standard Rankine–Hugoniot relations are not appropriate to describe the anisotropic behavior of PUIs at the termination shock, we use a kinetically-derived set of boundary conditions at it. We extend our previous work [1] and perform these new simulations on a Cartesian grid. This approach allows us to maintain a uniform grid resolution in all directions, without compromising resolution, at large distances from the Sun. The possibility of transition of the SW flow to a stochastic regime in the region between the termination shock and heliopause is further investigated.more » « less
-
The interaction of the solar wind with the local interstellar medium (LISM) spans a wide range of interacting particle populations, energies, and scales. Sophisticated models are required to capture the global picture, interpret near-Earth observations, and ultimately understand the properties of the LISM at distances of thousands of AUs, where the medium is presumed to be unperturbed by this interaction. We present a new extension of our MHD-plasma/kinetic-neutral heliospheric model, implemented within the Multi-Scale Fluid- Kinetic Simulation Suite (MS-FLUKSS). The new model treats singly and doubly charged helium ions, pickup protons, and electrons as separate, self-consistently coupled populations, interacting through six charge exchange processes and photoionization with kinetically treated neutral hydrogen and helium atoms. In this paper, we provide detailed information on the implementation, including new fits for the charge-exchange cross sections, and demonstrate the functionality and performance of the new codemore » « less
-
Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $$\sim47~\text{au}$$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock.more » « less
An official website of the United States government

