skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency-dependent force direction elucidates neural control of balance
Abstract BackgroundMaintaining upright posture is an unstable task that requires sophisticated neuro-muscular control. Humans use foot–ground interaction forces, characterized by point of application, magnitude, and direction to manage body accelerations. When analyzing the directions of the ground reaction forces of standing humans in the frequency domain, previous work found a consistent pattern in different frequency bands. To test whether this frequency-dependent behavior provided a distinctive signature of neural control or was a necessary consequence of biomechanics, this study simulated quiet standing and compared the results with human subject data. MethodsAiming to develop the simplest competent and neuromechanically justifiable dynamic model that could account for the pattern observed across multiple subjects, we first explored the minimum number of degrees of freedom required for the model. Then, we applied a well-established optimal control method that was parameterized to maximize physiologically-relevant insight to stabilize the balancing model. ResultsIf a standing human was modeled as a single inverted pendulum, no controller could reproduce the experimentally observed pattern. The simplest competent model that approximated a standing human was a double inverted pendulum with torque-actuated ankle and hip joints. A range of controller parameters could stabilize this model and reproduce the general trend observed in experimental data; this result seems to indicate a biomechanical constraint and not a consequence of control. However, details of the frequency-dependent pattern varied substantially across tested control parameter values. The set of parameters that best reproduced the human experimental results suggests that the control strategy employed by human subjects to maintain quiet standing was best described by minimal control effort with an emphasis on ankle torque. ConclusionsThe findings suggest that the frequency-dependent pattern of ground reaction forces observed in quiet standing conveys quantitative information about human control strategies. This study’s method might be extended to investigate human neural control strategies in different contexts of balance, such as with an assistive device or in neurologically impaired subjects.  more » « less
Award ID(s):
1724135 1723998
PAR ID:
10306581
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
18
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control. 
    more » « less
  2. Template models, such as the Bipedal Spring-Loaded Inverted Pendulum and the Virtual Pivot Point, have been widely used as low-dimensional representations of the complex dynamics in legged locomotion. Despite their ability to qualitatively match human walking characteristics like M-shaped ground reaction force (GRF) profiles, they often exhibit discrepancies when compared to experimental data, notably in overestimating vertical center of mass (CoM) displacement and underestimating gait event timings (touchdown/ liftoff). This paper hypothesizes that the constant leg stiffness of these models explains the majority of these discrepancies. The study systematically investigates the impact of stiffness variations on the fidelity of model fittings to human data, where an optimization framework is employed to identify optimal leg stiffness trajectories. The study also quantifies the effects of stiffness variations on salient characteristics of human walking (GRF profiles and gait event timing). The optimization framework was applied to 24 subjects walking at 40% to 145% preferred walking speed (PWS). The findings reveal that despite only modifying ground forces in one direction, variable leg stiffness models exhibited a >80% reduction in CoM error across both the B-SLIP and VPP models, while also improving prediction of human GRF profiles. However, the accuracy of gait event timing did not consistently show improvement across all conditions. The resulting stiffness profiles mimic walking characteristics of ankle push-off during double support and reduced CoM vaulting during single support. 
    more » « less
  3. Abstract This study introduces a hybrid model that utilizes a model-based optimization method to generate training data and an artificial neural network (ANN)-based learning method to offer real-time exoskeleton support in lifting activities. For the model-based optimization method, the torque of the knee exoskeleton and the optimal lifting motion are predicted utilizing a two-dimensional (2D) human–exoskeleton model. The control points for exoskeleton motor current profiles and human joint angle profiles from cubic B-spline interpolation represent the design variables. Minimizing the square of the normalized human joint torque is considered as the cost function. Subsequently, the lifting optimization problem is tackled using a sequential quadratic programming (SQP) algorithm in sparse nonlinear optimizer (SNOPT). For the learning-based approach, the learning-based control model is trained using the general regression neural network (GRNN). The anthropometric parameters of the human subjects and lifting boundary postures are used as input parameters, while the control points for exoskeleton torque are treated as output parameters. Once trained, the learning-based control model can provide exoskeleton assistive torque in real time for lifting tasks. Two test subjects’ joint angles and ground reaction forces (GRFs) comparisons are presented between the experimental and simulation results. Furthermore, the utilization of exoskeletons significantly reduces activations of the four knee extensor and flexor muscles compared to lifting without the exoskeletons for both subjects. Overall, the learning-based control method can generate assistive torque profiles in real time and faster than the model-based optimal control approach. 
    more » « less
  4. This work aims to enhance the linear inverted pendulum model (LIPM) for bipedal robot control. While the LIPM simplifies the dynamics by assuming homogeneity, it fails to capture critical nonlinear dynamics observed in real-world scenarios. To address this limitation, we propose the non-homogeneous LIPM (NH-LIPM), which incorporates a non-homogeneous term in the traditional LIPM dynamics. The NH-LIPM is augmented with controllable inputs, allowing for greater parameter control compared to the LIPM. Through regression analysis and the use of the Recursive Least Squares algorithm with forgetting, we extract and adaptively tune the NH-LIPM parameters. Evaluation through high-fidelity simulation and experimentation on a 30-degree-of-freedom humanoid demonstrates that the NH-LIPM offers improved velocity tracking control, particularly when ankle torque with damping control is added. This model provides a flexible framework for simultaneously controlling the center of mass velocity and position, enabling precise reference tracking and enhanced bipedal locomotion. A video is in this shortened link: http://tiny.cc/NHLIPM 
    more » « less
  5. Abstract The goal of this work is to present a method based on fluid–structure interactions to enforce a desired trajectory on a passive double pendulum. In our experiments, the passive double pendulum represents human thigh and shank segments, and the interaction between the fluid and the structure comes from a hydrofoil attached to the double pendulum and interacting with the vortices that are shed from a cylinder placed upstream. When a cylinder is placed in flow, vortices are shed in the wake of the cylinder. When the cylinder is forced to rotate periodically, the frequency of the vortices that are shed in its wake can be controlled by controlling the frequency of cylinder’s rotation. These vortices exert periodic forces on any structure placed in the wake of this cylinder. In our system, we place a double pendulum fitted with a hydrofoil at its distal end in the wake of a rotating cylinder. The vortices exert periodic forces on this hydrofoil which then forces the double pendulum to oscillate. We control the cylinder to rotate periodically, and measure the displacement of the double pendulum. By comparing the joint positions of the double pendulum with those of human hip, knee and ankle joint positions during walking, we show how the system is able to generate a human walking gait cycle on the double pendulum only using the interactions between the vortices and the hydrofoil. 
    more » « less