skip to main content


Title: DynamoVis 1.0: an exploratory data visualization software for mapping movement in relation to internal and external factors
Abstract Background

This paper introduces DynamoVis version 1.0, an open-source software developed to design, record and export custom animations and multivariate visualizations from movement data, enabling visual exploration and communication of patterns capturing the associations between animals’ movement and its affecting internal and external factors. Proper representation of these dependencies grounded on cartographic principles and intuitive visual forms can facilitate scientific discovery, decision-making, collaborations, and foster understanding of movement.

Results

DynamoVis offers a visualization platform that is accessible and easily usable for scientists and general public without a need for prior experience with data visualization or programming. The intuitive design focuses on a simple interface to apply cartographic techniques, giving ecologists of all backgrounds the power to visualize and communicate complex movement patterns.

Conclusions

DynamoVis 1.0 offers a flexible platform to quickly and easily visualize and animate animal tracks to uncover hidden patterns captured in the data, and explore the effects of internal and external factors on their movement path choices and motion capacities. Hence, DynamoVis can be used as a powerful communicative and hypothesis generation tool for scientific discovery and decision-making through visual reasoning. The visual products can be used as a research and pedagogical tool in movement ecology.

 
more » « less
Award ID(s):
1853681
NSF-PAR ID:
10306590
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Movement Ecology
Volume:
9
Issue:
1
ISSN:
2051-3933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship but also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner. 
    more » « less
  2. Abstract

    For over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework—adapted from the concept of a “digital twin”—which offers a nexus joining materials science and information science. We believe this high-level framework, the materials–information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward.

    Impact statement

    This article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials–information twin tetrahedra (MITT) framework captures a holistic perspective of materials science and engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)—factors that recognize how systems impact and interact with other systems—in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead.

    Graphic abstract 
    more » « less
  3. Abstract Summary

    Molecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization.

    Availability and implementation

    All relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.

     
    more » « less
  4. Abstract Background

    The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners.

    Methods

    A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children’s physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver’s income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state.

    Results

    Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment.

    Conclusions

    This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children’s environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

     
    more » « less
  5. Abstract

    SkyPortalis an open-source software package designed to discover interesting transients efficiently, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, crossmatching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, aSkyPortal-based platform has been operating at scale for >2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. WhileSkyPortalemphasizes rich user experiences across common front-end workflows, recognizing that scientific inquiry is increasingly performed programmatically,SkyPortalalso surfaces an extensive and well-documented application programming interface system. From back-end and front-end software to data science analysis tools and visualization frameworks, theSkyPortaldesign emphasizes the reuse and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance,SkyPortalnow leverages ChatGPT large language models to generate and surface source-level human-readable summaries automatically. With the imminent restart of the next generation of gravitational-wave detectors,SkyPortalnow also includes dedicated multimessenger features addressing the requirements of rapid multimessenger follow-up: multitelescope management, team/group organizing interfaces, and crossmatching of multimessenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for newcomers to the field. This paper focuses on the detailed implementations, capabilities, and early science results that establishSkyPortalas a community software package ready to take on the data science challenges and opportunities presented by this next chapter in the multimessenger era.

     
    more » « less