Grid cells play a principal role in enabling cognitive representations of ambient environments. The key property of these cells—the regular arrangement of their firing fields—is commonly viewed as a means for establishing spatial scales or encoding specific locations. However, using grid cells’ spiking outputs for deducing geometric orderliness proves to be a strenuous task due to fairly irregular activation patterns triggered by the animal’s sporadic visits to the grid fields. This article addresses statistical mechanisms enabling emergent regularity of grid cell firing activity from the perspective of percolation theory. Using percolation phenomena for modeling the effect of the rat’s moves through the lattices of firing fields sheds new light on the mechanisms of spatial information processing, spatial learning, path integration, and establishing spatial metrics. It is also shown that physiological parameters required for spiking percolation match the experimental range, including the characteristic 2/3 ratio between the grid fields’ size and the grid spacing, pointing at a biological viability of the approach.
A common approach to interpreting spiking activity is based on identifying the firing fields—regions in physical or configuration spaces that elicit responses of neurons. Common examples include hippocampal place cells that fire at preferred locations in the navigated environment, head direction cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and error. We argue that the existence and a number of properties of the firing fields can be established theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus to verify consistency of neuronal responses with a single coherent representation of space.
more » « less- Award ID(s):
- 1901338
- PAR ID:
- 10306877
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sharpee, T (Ed.)
Abstract -
Abstract The computational role of a neuron during attention depends on its firing properties, neurotransmitter expression and functional connectivity. Neurons in the visual cortical area V4 are reliably engaged by selective attention but exhibit diversity in the effect of attention on firing rates and correlated variability. It remains unclear what specific neuronal properties shape these attention effects. In this study, we quantitatively characterised the distribution of attention modulation of firing rates across populations of V4 neurons. Neurons exhibited a continuum of time‐varying attention effects. At one end of the continuum, neurons' spontaneous firing rates were slightly depressed with attention (compared to when unattended), whereas their stimulus responses were enhanced with attention. The other end of the continuum showed the converse pattern: attention depressed stimulus responses but increased spontaneous activity. We tested whether the particular pattern of time‐varying attention effects that a neuron exhibited was related to the shape of their actions potentials (so‐called ‘fast‐spiking’ [FS] neurons have been linked to inhibition) and the strength of their coupling to the overall population. We found an interdependence among neural attention effects, neuron type and population coupling. In particular, we found neurons for which attention enhanced spontaneous activity but suppressed stimulus responses were less likely to be fast‐spiking (more likely to be non‐fast‐spiking) and tended to have stronger population coupling, compared to neurons with other types of attention effects. These results add important information to our understanding of visual attention circuits at the cellular level.
-
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner.
-
Abstract Systematically organizing the anatomical, molecular, and physiological properties of cortical neurons is important for understanding their computational functions. Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker expression, and biophysical properties. We augmented the electrophysiological data of this knowledge base by collecting, quantifying, and analyzing the firing responses to depolarizing current injections for every hippocampal neuron type from published experiments. We designed and implemented objective protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and silence). This automated approach revealed 9 unique (plus one spurious) families of firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel statistical associations emerged between firing responses and other electrophysiological properties, morphological features, and molecular marker expression. The firing pattern parameters, experimental conditions, spike times, references to the original empirical evidences, and analysis scripts are released open-source through Hippocampome.org for all neuron types, greatly enhancing the existing search and browse capabilities. This information, collated online in human- and machine-accessible form, will help design and interpret both experiments and model simulations.
-
Abstract The local field potential (
LFP ) is an aggregate measure of group neuronal activity and is often correlated with the action potentials of single neurons. In recent years, investigators have found that action potential firing rates increase during elevations in power high‐frequency band oscillations (50–200 Hz range). However, action potentials also contribute to theLFP signal itself, making the spike–LFP relationship complex. Here, we examine the relationship between spike rates andLFP in varying frequency bands in rat neocortical recordings. We find that 50–180 Hz oscillations correlate most consistently with high firing rates, but that otherLFP bands also carry information relating to spiking, including in some cases anti‐correlations. Relatedly, we find that spiking itself and electromyographic activity contribute toLFP power in these bands. The relationship between spike rates andLFP power varies between brain states and between individual cells. Finally, we create an improved oscillation‐based predictor of action potential activity by specifically utilizing information from across the entire recorded frequency spectrum ofLFP . The findings illustrate both caveats and improvements to be taken into account in attempts to infer spiking activity fromLFP .