skip to main content


Title: The Nature of High-frequency Oscillations Associated with Short-lived Spicule-type Events
Abstract

We investigate high-resolution spectroscopic and imaging observations from the CRisp Imaging SpectroPolarimeter (CRISP) instrument to study the dynamics of chromospheric spicule-type events. It is widely accepted that chromospheric fine structures are waveguides for several types of magnetohydrodynamic (MHD) oscillations, which can transport energy from the lower to upper layers of the Sun. We provide a statistical study of 30 high-frequency waves associated with spicule-type events. These high-frequency oscillations have two components of transverse motions: the plane-of-sky (POS) motion and the line-of-sight (LOS) motion. We focus on single isolated spicules and track the POS using time–distance analysis and in the LOS direction using Doppler information. We use moment analysis to find the relation between the two motions. The composition of these two motions suggests that the wave has a helical structure. The oscillations do not have phase differences between points along the structure. This may be the result of the oscillation being a standing mode, or that propagation is mostly in the perpendicular direction. There is evidence of fast magnetoacoustic wave fronts propagating across these structures. To conclude, we hypothesize that the compression and rarefaction of passing magnetoacoustic waves may influence the appearance of spicule-type events, not only by contributing to moving them in and out of the wing of the spectral line but also through the creation of density enhancements and an increase in opacity in the Hαline.

 
more » « less
Award ID(s):
1936336
NSF-PAR ID:
10306919
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
921
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 30
Size(s):
["Article No. 30"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the detection of transverse magnetohydrodynamic waves, also known as Alfvénic waves, in the chromospheric fibrils of a solar-quiet region. Unlike previous studies that measured transversal displacements of fibrils in imaging data, we investigate the line-of-sight (LOS) velocity oscillations of the fibrils in spectral data. The observations were carried out with the Fast Imaging Solar Spectrograph of the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. By applying spectral inversion to the Hαand Caii8542 Å line profiles, we determine various physical parameters, including the LOS velocity in the chromosphere of the quiet Sun. In the Hαdata, we select two adjacent points along the fibrils and analyze the LOS velocities at those points. For the time series of the velocities that show high cross-correlation between the two points and do not exhibit any correlation with intensity, we interpret them as propagating Alfvénic wave packets. We identify a total of 385 Alfvénic wave packets in the quiet-Sun fibrils. The mean values of the period, velocity amplitude, and propagation speed are 7.5 minutes, 1.33 km s−1, and 123 km s−1, respectively. We find that the detected waves are classified into three groups based on their periods, namely, 3, 5, and 10 minute bands. Each group of waves exhibits distinct wave properties, indicating a possible connection to their generation mechanism. Based on our results, we expect that the identification of Alfvénic waves in various regions will provide clues to their origin and the underlying physical processes in the solar atmosphere.

     
    more » « less
  2. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

     
    more » « less
  3. Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.

     
    more » « less
  4. SUMMARY

    The near-surface seismic structure (to a depth of about 1000 m), particularly the shear wave velocity (VS), can strongly affect the propagation of seismic waves and, therefore, must be accurately calibrated for ground motion simulations and seismic hazard assessment. The VS of the top (<300 m) crust is often well characterized from borehole studies, geotechnical measurements, and water and oil wells, while the velocities of the material deeper than about 1000 m are typically determined by tomography studies. However, in depth ranges lacking information on shallow lithological stratification, typically rock sites outside the sedimentary basins, the material parameters between these two regions are typically poorly characterized due to resolution limits of seismic tomography. When the alluded geological constraints are not available, models, such as the Southern California Earthquake Center (SCEC) Community Velocity Models (CVMs), default to regional tomographic estimates that do not resolve the uppermost VS values, and therefore deliver unrealistically high shallow VS estimates. The SCEC Unified Community Velocity Model (UCVM) software includes a method to incorporate the near-surface earth structure by applying a generic overlay based on measurements of time-averaged VS in top 30 m (VS30) to taper the upper part of the model to merge with tomography at a depth of 350 m, which can be applied to any of the velocity models accessible through UCVM. However, our 3-D simulations of the 2014 Mw 5.1 La Habra earthquake in the Los Angeles area using the CVM-S4.26.M01 model significantly underpredict low-frequency (<1 Hz) ground motions at sites where the material properties in the top 350 m are significantly modified by the generic overlay (‘taper’). On the other hand, extending the VS30-based taper of the shallow velocities down to a depth of about 1000 m improves the fit between our synthetics and seismic data at those sites, without compromising the fit at well-constrained sites. We explore various tapering depths, demonstrating increasing amplification as the tapering depth increases, and the model with 1000 m tapering depth yields overall favourable results. Effects of varying anelastic attenuation are small compared to effects of velocity tapering and do not significantly bias the estimated tapering depth. Although a uniform tapering depth is adopted in the models, we observe some spatial variabilities that may further improve our method.

     
    more » « less
  5. ABSTRACT

    New instruments and telescopes covering the optical and ultraviolet spectral regions have revealed a range of small-scale dynamic features, many which may be related. For example, the range of spicule-like features hints towards a spectrum of features and not just two types; however, direct observational evidence in terms of tracking spicules across multiple wavelengths is needed in order to provide further insight into the dynamics of the Sun’s outer atmosphere. This paper uses H α data obtained with the CRisp Imaging SpectroPolarimeter instrument on the Swedish 1-m Solar Telescope, and in the transition region using the Interface Region Imaging Spectrograph with the SJI 1400 Å channel plus spectral data via the Si iv 1394 Å line to track spicules termed rapid blueshifted excursions (RBEs). The RBEs as seen in the H α blue wing images presented here can be subdivided into two categories: a single or multithreaded feature. Based on the H α spectra, the features can be divided into events showing broadening and line core absorption, events showing broadening and line core emission, events with a pure blueshifted H α profile without any absorption in the red wing, and broadened line profile with the absorption in the blue stronger compared to the red wing. From the RBE-like events that have a Si iv 1394 Å line profile, 78  per cent of them show a Si iv line flux increase. Most of these features show a second broadened Si iv component that is slightly blueshifted.

     
    more » « less