skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for signatures of H α spicule-like features in the solar transition region
ABSTRACT New instruments and telescopes covering the optical and ultraviolet spectral regions have revealed a range of small-scale dynamic features, many which may be related. For example, the range of spicule-like features hints towards a spectrum of features and not just two types; however, direct observational evidence in terms of tracking spicules across multiple wavelengths is needed in order to provide further insight into the dynamics of the Sun’s outer atmosphere. This paper uses H α data obtained with the CRisp Imaging SpectroPolarimeter instrument on the Swedish 1-m Solar Telescope, and in the transition region using the Interface Region Imaging Spectrograph with the SJI 1400 Å channel plus spectral data via the Si iv 1394 Å line to track spicules termed rapid blueshifted excursions (RBEs). The RBEs as seen in the H α blue wing images presented here can be subdivided into two categories: a single or multithreaded feature. Based on the H α spectra, the features can be divided into events showing broadening and line core absorption, events showing broadening and line core emission, events with a pure blueshifted H α profile without any absorption in the red wing, and broadened line profile with the absorption in the blue stronger compared to the red wing. From the RBE-like events that have a Si iv 1394 Å line profile, 78  per cent of them show a Si iv line flux increase. Most of these features show a second broadened Si iv component that is slightly blueshifted.  more » « less
Award ID(s):
1936336
PAR ID:
10430936
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1156-1168
Size(s):
p. 1156-1168
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We show signatures of spicules termed rapid blueshifted excursions (RBEs) in the Si iv 1394 Å emission line using a semi-automated detection approach. We use the H α filtergrams obtained by the CRISP imaging spectropolarimeter on the Swedish 1-m Solar Telescope and co-aligned Interface Region Imaging Spectrograph data using the SJI 1400 Å channel to study the spatiotemporal signature of the RBEs in the transition region. The detection of RBEs is carried out using an oriented coronal loop tracing algorithm on H α Dopplergrams at ±35 km s−1. We find that the number of detected features is significantly impacted by the time-varying contrast values of the detection images, which are caused by the changes in the atmospheric seeing conditions. We detect 407 events with lifetime greater than 32 s. This number is further reduced to 168 RBEs based on the H α profile and the proximity of RBEs to the large-scale flow. Of these 168 RBEs, 89 of them display a clear spatiotemporal signature in the SJI 1400 Å channel, indicating that a total of $$\sim 53{{\ \rm per\ cent}}$$ are observed to have co-spatial signatures between the chromosphere and the transition region. 
    more » « less
  2. Abstract We present reverberation mapping measurements for the prominent ultraviolet broad emission lines of the active galactic nucleus Mrk 817 using 165 spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Our ultraviolet observations are accompanied by X-ray, optical, and near-infrared observations as part of the AGN Space Telescope and Optical Reverberation Mapping Program 2 (AGN STORM 2). Using the cross-correlation lag analysis method, we find significant correlated variations in the continuum and emission-line light curves. We measure rest-frame delayed responses between the far-ultraviolet continuum at 1180 Å and Ly α λ 1215 Å ( 10.4 − 1.4 + 1.6 days), N v λ 1240 Å ( 15.5 − 4.8 + 1.0 days), Si iv + ]O iv λ 1397 Å ( 8.2 − 1.4 + 1.4 days), C iv λ 1549 Å ( 11.8 − 2.8 + 3.0 days), and He ii λ 1640 Å ( 9.0 − 1.9 + 4.5 days) using segments of the emission-line profile that are unaffected by absorption and blending, which results in sampling different velocity ranges for each line. However, we find that the emission-line responses to continuum variations are more complex than a simple smoothed, shifted, and scaled version of the continuum light curve. We also measure velocity-resolved lags for the Ly α and C iv emission lines. The lag profile in the blue wing of Ly α is consistent with virial motion, with longer lags dominating at lower velocities, and shorter lags at higher velocities. The C iv lag profile shows the signature of a thick rotating disk, with the shortest lags in the wings, local peaks at ±1500 km s −1 , and a local minimum at the line center. The other emission lines are dominated by broad absorption lines and blending with adjacent emission lines. These require detailed models, and will be presented in future work. 
    more » « less
  3. Abstract Small-scale brightenings (SBs) are commonly observed in the transition region (TR) that separates the solar chromosphere from the corona. These brightenings, omnipresent in active region patches known as “moss” regions, could potentially contribute to the heating of active region plasma. In this study, we investigate the properties of SB events in a moss region and their associated chromospheric dynamics, which could provide insights into the underlying generation mechanisms of the SBs. We analyzed the data sets obtained by coordinated observations using the Interface Region Imaging Spectrograph and the Goode Solar Telescope at Big Bear Solar Observatory. We studied 131 SB events in our region of interest and found that 100 showed spatial and temporal matches with the dynamics observed in the chromospheric Hαimages. Among these SBs, 98 of them were associated with spicules that are observed in Hαimages. Furthermore, detailed analysis revealed that one intense SB event corresponded to an Ellerman bomb (EB), while another SB event consisted of several recurring brightenings caused by a stream of falling plasma. We observed that Hαfar wings often showed flashes of strong brightening caused by the falling plasma, creating an Hαspectral profile similar to an EB. However, 31 of the 131 investigated SB events showed no noticeable spatial and temporal matches with any apparent features in Hαimages. Our analysis indicated that the predominant TR SB events in moss regions are associated with chromospheric phenomena primarily caused by spicules. Most of these spicules display properties akin to dynamic fibrils. 
    more » « less
  4. null (Ed.)
    ABSTRACT Outflows from supermassive black holes (SMBHs) play an important role in the co-evolution of themselves, their host galaxies, and the larger scale environments. Such outflows are often characterized by emission and absorption lines in various bands and in a wide velocity range blueshifted from the systematic redshift of the host quasar. In this paper, we report a strong broad line region (BLR) outflow from the z ≈ 4.7 quasar BR 1202-0725 based on the high-resolution optical spectrum taken with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph installed on the 6.5 m Magellan/Clay telescope, obtained from the ‘Probing the He ii re-Ionization ERa via Absorbing C iv Historical Yield’ (HIERACHY) project. This rest-frame ultraviolet (UV) spectrum is characterized by a few significantly blueshifted broad emission lines from high ions; the most significant one is the C iv line at a velocity of $$\sim -6500$$ km s−1 relative to the H α emission line, which is among the highest velocity BLR outflows in observed quasars at z > 4. The measured properties of UV emission lines from different ions, except for O i and Ly α, also follow a clear trend that higher ions tend to be broader and outflow at higher average velocities. There are multiple C iv and Si iv absorbing components identified on the blue wings of the corresponding emission lines, which may be produced by either the outflow or the intervening absorbers. 
    more » « less
  5. Abstract Small-scale jets, such as chromospheric and transition region (TR) network jets, are of great interest regarding coronal heating and solar wind acceleration. Spectroscopic analysis based on multiple spectral lines with different formation temperatures is essential for understanding the physical properties and driving mechanisms of jets. Here, we conduct an investigation of the physical properties of a small-scale chromospheric jet in a quiet-Sun network region and its TR counterpart. This jet is recorded from formation to extinction using the Fast Imaging Solar Spectrograph at the Goode Solar Telescope and the Interface Region Imaging Spectrograph. The chromospheric component of the jet exhibits a high line-of-sight speed of up to 45 km s−1during its ascending phase, accompanied by spectral profiles akin to rapid blueshifted excursion and downflowing rapid redshifted excursion during the descending phase. Using a cloud model combined with a Multi-Layer Spectral Inversion, we quantify the jet’s temperature during its ascending phase, which starts at approximately 11,000 K and increases by only 1000 K over 1 minute, much smaller than a few 104K, the excess temperature expected in an ideal gas reconnection jet at an outflow speed of 45 km s−1. The TR counterpart exhibits a Siiv1394 Å line profile with a non-Gaussian shape, including a blueshifted component and a large nonthermal width. Our results suggest that if the jet is driven by magnetic reconnection in the chromosphere, the heat released by the reconnection may be mostly used to ionize the hydrogen rather than to increase the temperature so that the gas may appear almost isothermal. 
    more » « less